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ey~ Sketch the graph of the polynomial function P(x) = (x + 2)(x — 1)(x — 3).

SOLUTION The zeros are x = —2, 1, and 3. These determine the intervals (—o, —2),
(=2,1), (1,3), and (3, ). Using test points in these intervals, we get the informa-
tion in the following sign diagram (see Section 1.8).

Test point Test point Test point Test point
x=-3 x=-1 = x=4
P(-3)<0 P(-1)>0 P2)<0 IR(S)E=0)
-2 1 3
Sign of
P(x) = (x + 2)(x = 1)(x = 3) - - - +
Graph of P below above below above
X-axis X-axis X-axis x-axis

Plotting a few additional points and connecting them with a smooth curve helps us to
complete the graph in Figure 7.

* b Test point ' T ;e(zt)p: gn
Test point — | =3 —24 PED>0
- 0 T
Test point — =1 8 /.\A
0 6 , ‘ \\ , ,
1 0 o N x
Test point — 2 -4 1
3 0 Test point Test point
Test point — 4 18 P(3)<0 T P@<0

FIGURE7 P(x) = (x + 2)(x — 1)(x — 3)
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EXAMPLE 5 = Finding Zeros and Graphing a Polynomial Function

Let P(x) = x* — 2x* = 3x.
(a) Find the zeros of P. (b) Sketch a graph of P.
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EXAMPLE 6 © Finding Zeros and Graphing a Polynomial Function
Let P(x) = —2x* — x° + 3x°.
(a) Find the zeros of P. (b) Sketch a graph of P.
SOLUTION
(a) To find the zeros, we factor completely.
P(x) = =2x* = x° + 3x*
= —x’(2x* + x - 3) Factor —x”
= —x*(2x + 3)(x — 1)  Factor quadratic
Thus the zeros are x = 0, x = —%, and x = 1.

(b) The x-intercepts are x = 0, x = —3, and x = 1. The y-intercept is P(0) = 0. W
make a table of values of P(x), making sure that we choose test points betweer
(and to the right and left of) successive zeros.

Since P is of even degree and its leading coefficient is negative, it has the fol
lowing end behavior.

y—>—® as x—® and y—>—® as x— —®©

We plot the points from the table and connect the points by a smooth curve to
complete the graph in Figure 9.

X () di
—2 —12
=L 0
—1 2
—-0.5 0.75
0 0
0.5 0.5
1 0
1.5 =6L10

FIGURE9 P(x) = —2x* — x* + 3x?
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EXAMPLE 7 = Finding Zeros and Graphing a Polynomial Function

Let P(x) = x> = 2x%>—= 4x + 8.
(a) Find the zeros of P. (b) Sketch a graph of P.

SOLUTION

(a) To find the zeros, we factor completely.
Px)=x—-2x>—4x+ 8

= xz(x —i2) = d{x— 2) Group and factor

= (x* — 4)(x — 2) Factor x — 2
= (x+ 2)(x —2)(x —2) Difference of squares
= (x + 2)(x — 2)? Simplify

Thus the zeros are x = —2 and x = 2.

(b) The x-intercepts are x = —2 and x = 2. The y-intercept is P(0) = 8. The table
gives additional values of P(x).
Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior.

y—>o© as x— o and y—>—o as x— —

We connect the points by a smooth curve to complete the graph in Figure 10.
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FIGURE 10
P(x) =x>—2x>—4x + 8
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RATIONAL ZEROS THEOREM

If the polynomial P(x) = a,x" + a,_,x"~' + -+ + a;x + a, has integer
coefficients (where a, # 0 and a, # 0), then every rational zero of P is of the form

p

q
where p and ¢ are integers and

p is a factor of the constant coefficient a,
q is a factor of the leading coefficient a,

Px)=(x—2)(x—3)(x+4) Factored form
=x>—x*—14x + 24 Expanded form

From the factored form we see that the zeros of P are 2, 3, and —4. When the polyno-
mial is expanded, the constant 24 is obtained by multiplying (—2) X (—3) X 4. This
means that the zeros of the polynomial are all factors of the constant term. The follow-
ing generalizes this observation.

EXAMPLE 1 = Using the Rational Zeros Theorem
Find the rational zeros of P(x) = x* — 3x + 2.

SOLUTION  Since the leading coefficient is 1, any rational zero must be a divisor of
the constant term 2. So the possible rational zeros are =1 and =2. We test each of
these possibilities.

P(1)=(1)>’-3(1)+2=0
P(-1)=(-1P®-3(-1)+2=4

P(2)=(2)P-32)+2=4
P(-2)=(-2)-3(-2)+2=0

The rational zeros of P are 1 and —2.



The following box explains how we use the Rational Zeros Theorem with synthetic
division to factor a polynomial.

FINDING THE RATIONAL ZEROS OF A POLYNOMIAL

1. List Possible Zeros. List all possible rational zeros, using the Rational
Zeros Theorem.

2. Divide. Use synthetic division to evaluate the polynomial at each of the
candidates for the rational zeros that you found in Step 1. When the
remainder 1s 0, note the quotient you have obtained.

3. Repeat. Repeat Steps 1 and 2 for the quotient. Stop when you reach a
quotient that is quadratic or factors easily, and use the quadratic formula or
factor to find the remaining zeros.

EXAMPLE 2 = Finding Rational Zeros

Write the polynomial P(x) = 2x* + x* — 13x + 6 in factored form, and find all its
Zeros.

SOLUTION By the Rational Zeros Theorem the rational zeros of P are of the form

factor of constant term

possible rational zero of P = - -
factor of leading coefficient

The constant term is 6 and the leading coefficient is 2, so

factor of 6

ossible rational zero of P =
P factor of 2

The factors of 6 are =1, £2, =3, +6, and the factors of 2 are =1, *2. Thus the
possible rational zeros of P are

—+

9 LI —_

6 1 2 3
= = = = &
U 2! 2 2

| o

Simplifying the fractions and eliminating duplicates, we get the following list of
possible rational zeros:
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The Cubic formula

Here are the steps for finding the roots of a cubic polynomial of the form

2 +ar+b if — <§)3— (g)2>0

Step 1. Let D be the complex number

D= ye-G) - G)

Step 2. Find a complex number z € C such that 23 = D.

Step 3. Let R be the real part of z, and let I be the imaginary part of z, so
that R and [ are real numbers with z = R + /.

Step 4. The three roots of 2% 4+ az + b are the real numbers 2R, —R + /31,

and —R — v/31.
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The Fundamental Theorem of Algebra
and Complete Factorization

The following theorem is the basis for much of our work in factoring polynomials and
solving polynomial equations.

FUNDAMENTAL THEOREM OF ALGEBRA
Every polynomial

P(.X) = anxn + an—lxn—l ST ax + agy (n = 1,(1" > 0)

with complex coefficients has at least one complex zero.

Because any real number is also a complex number, the theorem applies to polyno-
mials with real coefficients as well.

The Fundamental Theorem of Algebra and the Factor Theorem together show that a
polynomial can be factored completely into linear factors, as we now prove.

COMPLETE FACTORIZATION THEOREM

If P(x) is a polynomial of degree n = 1, then there exist complex numbers
a, ¢, Cy, - . ., ¢, (With @ # 0) such that

P(x) = a(x = c)(x =) - (x — )
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EXAMPLE 1 = Factoring a Polynomial Completely

Let P(x) = x> — 3x* + x — 3.
(a) Find all the zeros of P.
(b) Find the complete factorization of P.

SOLUTION
(a) We first factor P as follows.

Px)=x*=3x*+x-3 Given
=x%(x —3) 4+ (x —3)  Group terms
=(x — 3)(x*+ 1) Factor x — 3
We find the zeros of P by setting each factor equal to 0:
P(x) = (x — 3)(x* + 1)

This factor is O when x = 3 This factor is O when x = i or —i

Setting x — 3 = 0, we see that x = 3 is a zero. Setting x> + 1 = 0, we get
x> = —1,s0x = *i. So the zeros of P are 3, i, and —i.

(b) Since the zeros are 3, i, and —i, the complete factorization of P is

P(x) = (x = 3)(x = i)lx = (=1)]
= (x — 3)(x — )(x + i)

EXAMPLE 2 = Factoring a Polynomial Completely

Let P(x) = x> — 2x + 4.
(a) Find all the zeros of P.
(b) Find the complete factorization of P.



In the Complete Factorization Theorem the numbers ¢y, ¢,, . . . , ¢, are the zeros of P.
These zeros need not all be different. If the factor x — ¢ appears k times in the complete
factorization of P(x), then we say that c is a zero of multiplicity k (see page 263). For
example, the polynomial

P(x) = (x — 1)°(x + 2)*(x + 3)°
has the following zeros:
1 (multiplicity 3) —2 (multiplicity 2) —3 (multiplicity 5)

The polynomial P has the same number of zeros as its degree: It has degree 10 and has
10 zeros, provided that we count multiplicities. This is true for all polynomials, as we
prove in the following theorem.

ZEROS THEOREM

Every polynomial of degree n = 1 has exactly n zeros, provided that a zero of
multiplicity & is counted k times.

e
EXAMPLE 3 = Factoring a Polynomial with Complex Zeros
Find the complete factorization and all five zeros of the polynomial
P(x) = 3x° + 24x + 48x
SOLUTION Since 3x is a common factor, we have
P(x) = 3x(x* + 8x* + 16)

= 3x(x* + 4)°

This factor is O when x = 0 This factor is 0 when
x=2iorx = —2i



EXAMPLE 4 = Finding Polynomials with Specified Zeros

(a) Find a polynomial P(x) of degree 4, with zeros i, —i, 2, and —2, and with
P(3) = 25.

(b) Find a polynomial Q(x) of degree 4, with zeros —2 and 0, where —2 is a zero of
multiplicity 3.
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CONJUGATE ZEROS THEOREM

If the polynomial P has real coefficients and if the complex number z is a zero
of P, then its complex conjugate z is also a zero of P.

EXAMPLE 6 = A Polynomial with a Specified Complex Zero

Find a polynomial P(x) of degree 3 that has integer coefficients and zeros 3 and
3=

SOLUTION Since 3 — i is a zero, then so is 3 + i by the Conjugate Zeros Theorem.
This means that P(x) must have the following form.

P() = alx = Ylx = 3 = Dl = (3 + 1)
= ax = (x =3 + (- 3) — 1] Regrowp
= a(x — 3)[(x — 3)* — i?] Difference of Squares Formula
= a(x — 3)(x* — 6x + 10) Expand
= a(x® — ¥x* + 13x — 5) Expand

To make all coefficients integers, we set @ = 2 and get
P(x) = 2x® — 13x* + 26x — 10

Any other polynomial that satisfies the given requirements must be an integer multi-
ple of this one.



Linear and Quadratic Factors

We have seen that a polynomial factors completely into linear factors if we use complex
numbers. If we don’t use complex numbers, then a polynomial with real coefficients can
always be factored into linear and quadratic factors. We use this property in Section 10.7
when we study partial fractions. A quadratic polynomial with no real zeros is called
irreducible over the real numbers. Such a polynomial cannot be factored without using

complex numbers.

LINEAR AND QUADRATIC FACTORS THEOREM

Every polynomial with real coefficients can be factored into a product of linear
and irreducible quadratic factors with real coefficients.

EXAMPLE 7 = Factoring a Polynomial into Linear and Quadratic Factors

Let P(x) = x* + 2x* — 8.
(a) Factor P into linear and irreducible quadratic factors with real coefficients.

(b) Factor P completely into linear factors with complex coefficients.

SOLUTION
(a) P(x) = x* + 2x* — 8

= (x* — 2)(x* + 4)
= (x — V2)(x + V2)(x* + 4)
The factor x> + 4 is irreducible, since it has no real zeros.
(b) To get the complete factorization, we factor the remaining quadratic factor:
P(x) = (x — V2)(x + V2)(x* + 4)
=(x — V2)(x + V2)(x — 2i)(x + 2i)

® . Now Try Exercise 67 |
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