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One-to-One Functions

Let’s compare the functions f and g whose arrow diagrams are shown in Figure 1. Note
that f never takes on the same value twice (any two numbers in A have different im-
ages), whereas g does take on the same value twice (both 2 and 3 have the same image,
4). In symbols, g(2) = ¢g(3) but f(x;) # f(x,) whenever x; # x,. Functions that have
this latter property are called one-to-one.
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f is one-to-one ¢ 1s not one-to-one

FIGURE 1

DEFINITION OF A ONE-TO-ONE FUNCTION

A function with domain A is called a one-to-one function if no two elements
of A have the same image, that is,

f(x;) # f(x,) whenever x; # x,
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HORIZONTAL LINETEST

A function is one-to-one if and only if no horizontal line intersects its graph
more than once.
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The Inverse of a Function

One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.

DEFINITION OF THE INVERSE OF A FUNCTION

Let f be a one-to-one function with domain A and range B. Then its inverse
function f~' has domain B and range A and is defined by

i) =x < f(x) =y

for any y in B.
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This definition says that if f takes x to y, then f~' takes y back to x. (If f were not
one-to-one, then f~' would not be defined uniquely.) The arrow diagram in Figure 6

indicates that f~' reverses the effect of f. From the definition we have
domain of f~' = range of f

range of f~' = domain of f
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EXAMPLE 4 = Finding f~' for Specific Values
If (1) =5, f(3) = 7, and £(8) = —10, find £~'(5), £'(7), and £~'(—10).
SOLUTION From the definition of f~' we have
f7Y(5) =1 because f(1) =15
fY(7) =3 because f(3) =7
)

f'(—10) = 8 because f(8) = —10
Figure 7 shows how f~! reverses the effect of f in this case.
A B A B
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FIGURE 7
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By definition the inverse function f ' undoes what f does: If we start with x, apply
f, and then apply f ~! we arrive back at x, where we started. Similarly, f undoes what
£~ ! does. In general, any function that reverses the effect of f in this way must be the
inverse of f. These observations are expressed precisely as follows.

INVERSE FUNCTION PROPERTY

Let f be a one-to-one function with domain A and range B. The inverse function
£~! satisfies the following cancellation properties:

fY(f(x)) = x forevery xin A
f(f '(x)) = x forevery xin B

Conversely, any function f ' satisfying these equations is the inverse of f.

These properties indicate that f is the inverse function of f~', so we say that f and
{1 are inverses of each other.
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Finding the Inverse of a Function

Now let’s examine how we compute inverse functions. We first observe from the
definition of f~! that

y=fx) & () =x

Soif y = f(x) and if we are able to solve this equation for x in terms of y, then we must
have x = f~!(y). If we then interchange x and y, we have y = f~!(x), which is the
desired equation.

HOW TO FIND THE INVERSE OF A ONE-TO-ONE FUNCTION
1. Write y = f(x).
2. Solve this equation for x in terms of y (if possible).

3. Interchange x and y. The resulting equationis y = f~'(x).

EXAMPLE 7 = Finding the Inverse of a Function

Find the inverse of the function f(x) = 3x — 2.

°.9. x" ko x
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The principle of interchanging x and y to find the inverse function also gives us a method
for obtaining the graph of f~' from the graph of f. If f(a) = b, then f~'(b) = a. Thus
the point (a, b) is on the graph of f if and only if the point (b, a) is on the graph of f'.
But we get the point (b, a) from the point (a, b) by reflecting in the line y = x (see
Figure 9). Therefore, as Figure 10 illustrates, the following is true.

The graph of f~' is obtained by reflecting the graph of f in the line y = x.

)7:x y=./\'

(b, a)

=Y
\
\
Y

FIGURE 9 FIGURE 10



EXAMPLE 10 ©~ Graphing the Inverse of a Function

(a)
(b)
(©)

Sketch the graph of f(x) = Vx — 2.
Use the graph of f to sketch the graph of f~'.

Find an equation for f~'.

SOLUTION

(a)

(b)

(¢

Using the transformations from Section 2.6, we sketch the graph of y = Vx — 2
by plotting the graph of the function y = Vx (Example 1(c) in Section 2.2) and
shifting it to the right 2 units.

The graph of £~ is obtained from the graph of f in part (a) by reflecting it in the
line y = x, as shown in Figure 11.

Solve y = Vx — 2 for x, noting that y = 0.
Vx—2=y
x—2=y Square each side

x=y>4+2 y=0 Add2

Interchange x and y, as follows:
y=x2+2 x=0
Thus fix)=x*+2 x =0

This expression shows that the graph of £~ is the right half of the parabola
y = x* + 2, and from the graph shown in Figure 11 this seems reasonable.
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A polynomial function is a function that is defined by a polynomial expression. So a
polynomial function of degree n is a function of the form

P(x) = @ x" + @, _i%% " + o o F @i F a, # 0

We have already studied polynomial functions of degree 0 and 1. These are functions of
the form P(x) = a, and P(x) = a;x + a,, respectively, whose graphs are lines. In this
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QUADRATIC FUNCTIONS

A quadratic function is a polynomial function of degree 2. So a quadratic
function is a function of the form

f(x) =ax*+bx+c a#0

We see in this section how quadratic functions model many real-world phenomena. We
begin by analyzing the graphs of quadratic functions.
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. EXAMPLE 2 = Minimum Value of a Quadratic Function
/a ' Consider the quadratic function f(x) = 5x* — 30x + 49.

(a) Express f in standard form.

(b) Sketch a graph of f.

(¢) Find the minimum value of f.

SOLUTION
(a) To express this quadratic function in standard form, we complete the square.

f(x) = 5x% — 30x + 49

= 5(x? — 6x) + 49 Factor 5 from the x-terms
Complete the square: Add 9 inside
=5(x2 — g — 5% I 1
5(x 6x+9)+49-5-9 parentheses, subtract 5 + 9 outside

=5(x—3)>+4 Factor and simplify

(b) The graph is a parabola that has its vertex at (3,4) and opens upward, as
sketched in Figure 2.

(¢) Since the coefficient of x? is positive, f has a minimum value. The minimum
value is f(3) = 4.

EXAMPLE 3 = Maximum Value of a Quadratic Function

Consider the quadratic function f(x) = —x* + x + 2.
(a) Express f in standard form.
(b) Sketch a graph of f.

(¢) Find the maximum value of f.



EXAMPLE 4 = Finding Maximum and Minimum Values
of Quadratic Functions

Find the maximum or minimum value of each quadratic function.
(@) f(x) =x*+ 4x

(b) g(x) = —2x* +4x — 5

SOLUTION

(a) This is a quadratic function with @ = 1 and b = 4. Thus the maximum or mini-
mum value occurs at
b 4

—_—_— = —— = —2
2a 2-1

x:

Since a > 0, the function has the minimum value
£(=2) = (-2 + 4(-2) = ~4

(b) This is a quadratic function with @ = —2 and b = 4. Thus the maximum or mini-
mum value occurs at

b -+

" 22 2:(-2)

x:

Since a < 0, the function has the maximum value

f(1) = =2(1)* + 4(1) =5 = -3
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POLYNOMIAL FUNCTIONS

A polynomial function of degree n is a function of the form
P(x) =ax"+ a,_x" '+ -+ + aix + aq

where n is a nonnegative integer and a, # 0.

The numbers a,, a,, a,, . . ., a, are called the coefficients of the polynomial.
The number q, is the constant coefficient or constant term.

The number a,, the coefficient of the highest power, is the leading coefficient,
and the term a,x" is the leading term.
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DIVISION ALGORITHM

If P(x) and D(x) are polynomials, with D(x) # 0, then there exist unique
polynomials Q(x) and R(x), where R(x) is either O or of degree less than the
degree of D(x), such that

2y} R(x)

D(x) ) + D(x) ot P(x) = D(x) - O(x) + R(x)

Remainder

Dividend Divisor  Quotient

The polynomials P(x) and D(x) are called the dividend and divisor, respec-
tively, Q(x) is the quotient, and R(x) is the remainder.




EXAMPLE 1 = Long Division of Polynomials

Divide 6x* — 26x + 12 by x — 4. Express the result in each of the two forms shown
in the above box.

§~ —2

K= ¢ ) Ex = vf{x + (2
éXL—W'x

—2x Tl

—ix + ¥

4.
KX)’_’ Zé’f +\r = (éx~b) (x-«¢) + y

Let P(x) = 8x* + 6x* — 3x + 1 and D(x) = 2x* — x + 2. Find polynomials Q(x)
and R(x) such that P(x) = D(x)-Q(x) + R(x).
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Sx*t 62— 3x+1 =282 —x+2)@x?4+ 2%) +(—Tx+ 1)




REMAINDER THEOREM

If the polynomial P(x) is divided by x — ¢, then the remainder is the value P(c).
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FACTOR THEOREM

c is a zero of P if and only if x — ¢ is a factor of P(x).
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EXAMPLE 5 = Factoring a Polynomial Using the Factor Theorem

Let P(x) = x> — 7x + 6. Show that P(1) = 0, and use this fact to factor P(x)
completely.

SOLUTION Substituting, we see that P(1) = 1 — 7.1 + 6 = 0. By the Factor
Theorem this means that x — 1 is a factor of P(x). Using synthetic or long division
(shown in the margin), we see that

Px) =x*—Tx+6 Given polynomial
=(x—1)(x*+x—6) See margin
=(x—1(x—2)(x+ 3) Factor quadratic x*> + x — 6

. Now Try Exercises 53 and 57 H

EXAMPLE 6 ~ Finding a Polynomial with Specified Zeros

Find a polynomial of degree four that has zeros —3, 0, 1, and 5, and the coefficient of
3 .
%718—6.
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The end behavior of a polynomial is a description of what happens as x becomes
large in the positive or negative direction. To describe end behavior, we use the follow-
ing arrow notation.

Symbol Meaning
X —> 00 x goes to infinity; that is, x increases without bound
X— — X goes to negative infinity; that is, x decreases without bound

For example, the monomial y = x? in Figure 1(b) has the following end behavior.
y—>o© as x—w and y—>o as Xx— —®

The monomial y = x* in Figure 1(c) has the following end behavior.
y—>0© as Xx—® and y—>—0 as x—> —o

For any polynomial the end behavior is determined by the term that contains the high-
est power of x, because when x is large, the other terms are relatively insignificant in
size. The following box shows the four possible types of end behavior, based on the
highest power and the sign of its coefficient.

END BEHAVIOR OF POLYNOMIALS

The end behavior of the polynomial P(x) = a,x" + a,_x"~' + - -+ + a;x + a, is determined by the degree n and the
sign of the leading coefficient a,, as indicated in the following graphs.

P has odd degree P has even degree
y—> @as y—> ©as y—> ®as
y— coas X =0 X —> —00 X —> 00
VAR eg y / ) y
o
e ~\ ’ . i 5 N
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0 X 0 b Y 0 I 0 X
M a" 2 ¢/
2 S

y—>—mas y —>—00as Pk = A y—>—®as
Y — —00 Y=o X == —00 X —> 0

Leading coefficient positive Leading coefficient negative Leading coefficient positive Leading coefficient negative




EXAMPLE 2 = End Behavior of a Polynomial

Determine the end behavior of the polynomial

P(x) = —2x*+ 5 + 4x — 7

SOLUTION The polynomial P has degree 4 and leading coefficient —2. Thus P has
even degree and negative leading coefficient, so it has the following end behavior.

y—>—® as X—>® and y—>—® as x—>—®

The graph in Figure 4 illustrates the end behavior of P.

30

y—) —00 as

y—)—OOas X —> 00

X — —00

FIGURE4 P(x) = —2x* + 5x° + 4x — 7



