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1. INTRODUCTION AND NOTATIONS

Suppose F' is a totally real number field of degree d, we denote its real embeddings by {71, 72, - -, 74}. V
is a finite dimensional vector space over R with a nondegenerate symmetric bilinear form (, ). We know
that

d
VRgR>@PV®r., R
i=1
and the bilinear form ( , ) decomposes into

d
(7 )®QR2<:B(7 )Ti

We assume ( , ), is postive definite for ¢ > 2, and has signature (p,2) for (, ),,. We consider the following
Shimura datum: G = Resp/pGSpin(V'), then

d
Gr ~ n GSpin(Vy,)
i=1

for i = 2, we define h; : S — GSpin(V;,) to be the trivial map. Next we choose an orthogonal basis of V,,
and define

u:Up — SO(Vy,)

Ly
e s cos(20)  sin(20)
—sin(20) cos(26)

then u will lift to the double cover Spin(V;,) of SO(V;,), we denote it by @, then by the following exact
sequence,
1-G, >S->U; -1

we get a homomorphism hy : S — GSpin(V,,), put all h; together, we get

i1 h
h:S =5 Gg

we use X to denote the conjugacy class of h, then (G, X) is a Shimura datum. The associated Hermitain

symmetric domain can be described as follows
Dy = {U c V., | Uis an oriented negative definite 2-plane}

Dy has two connected components, we will use D‘J; to denote one of it. At a point z € D‘t, it corresponds

to a decomposition,

(1) V=z+2z"

z is a negative 2-plane, and z= is a positive p-plane. By Cartan decomposition, we have
SO(Vy,)" = exp(p) - Koo

where K is the stabilizer of the decomposition (1), or equivalently, the stabilizer of z. p is the orthogonal

complement of ¢ = Lie(K) w.r.t the Killing form on so(V,,), and we have a diffeomorphism,
D = SO(V,,)/K &2 p

p can be viewed as the tangent space at z of D},. On the other hand, since Dy’ is an open subset of the

Grassmannian, we can identify the tangent space at z to be,
(2) T.Dy: ~ Homg(2,V/2) ~ 2* @ 2+ ~ 2 ® 2+

we use {z1,22} to denote an oriented orthonormal basis of z, and {wi,ws,- - -, w,} to denote an oriented

orthonormal basis of z+, then by (2), {vij =w; ® Zj}i,j make up a basis of TZD‘J}7 and we use w;; to denote
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the coodinate function on p ~ TZD"; w.r.t this basis.

Our main goal is to construct a harmonic form on the Shimura variety Shg (G, X). Recall that for an
open compact subgroup K < G(Ay),
Shi (G, X) = G(Q\Dv x G(Ay)/K ~ G(Q)+\Dy, x G(As)/K
Our method is first constructing a harmonic 2n—form @E}’ ) on the Hermitian symmetric domain Dy} satisfying

some good properties, then take “average” of it by theta distribution, i.e.

(3) Og)= D wlgel(X)- ps(X)
XeV (F)n

here

(4) o € S(V(F @ R)™) R Q*"(Dy)

we can do the “average” operation because we have the Weil representation of G(A) on the Schwarzt space
S(V(Ar)™) which is trivial on rational points G(Q), then (3) will turn out to be a harmonic form on the
Shimura variety. We can also include the Metaplectic action on (3), we denote G’ = Mp(2n,R), this is not
an algebraic group, but we can still define G'(Ar) = Mp(2n, Ar), which is a double cover of Sp(2n, Ar), we
use ¢’ to denote an element in G'(Ap), then
(5) O(g.g9) = > wlg 9™ (X)- or(X)

XeV(F)»
This will also turn out to be a smooth form on the Shimura variety, which only depends on the following
double coset,

Sp(2n, Q\G' (A ) /K’
where K’ stabilize 5 € S(V(Ap,r)). In this note, we will study the construction and uniqueness property
of the element (4).

In section 2 and 3, we make a summary of all the properties we want for this element, and then study the

cohomological class of (5), we compute its Fourier expansion w.r.t. the metaplectic group.

In section 4, we explain two ways of construction. The first construction assumes the known results of
p =1, and gives an explicit formula (27) and (28). The second construction uses Howe operator and works

more generally. These two constructions coincides with each other.

In section 5, we prove the uniqueness of the element (4) satisfying all the properties listed in section
2. Then we prove that (4) will be an eigenform under the action of the maximal compact subgroup K’ of
Mp(2n,R).

2. SUM UP OF PROPERTIES WE WANT

Note that we have the following isomorphism,

S(V(F®&qR)")) ~ 9 S(Vx,)

)
[®-
i

d
S(V(F®aR)") @ Q*"(Dv) ~ (S(V,) Q2*"(Dv)) ® ® S(Vr,)

i=2
these two isomorphisms are compatible with the G(R) x G'(R) action. In the rest of this note, we will
mainly focus on the first term S(V;,) ® Q?*(Dy ). To simplify notation, we will still use V to denote a finite

dimensional vector space over R with a non-degenerate symmetric bilinear form of signature (p, 2) for some
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p = 1. Our main goal is to find a system of forms {cpgf)}v,n, such that

1. Lpg}l) e S(V™) ® Q?"(Dy) is closed.
2. {(pg‘)}vm satisfy the restriction rule.
3. {(pi,n)}vm satisfy the product rule.

In the rest of this section, we will explain the meanings of 1,2, 3 in detail, especially 2 and 3.

Let’s explain the closedness condition, since the coefficients of gp&? ) lie in the Schwartz function space, the

)

d operator will commute with the summation in (5), then the closedness of go%}l implies the closedness of

©(¢’,g) as a smooth form on Dy .
2.1. Restriction rule. It’s convenient to introduce the following category Qo
Object : Finite dimensional vector space over R with a non-degenerate symmetric bilinear form of signature (p,2) for
Morphism : Linear homomorphisms preserving the forms on target and source
By the non-degeneracy of the bilinear form, it’s easy to show the following
Lemma 2.1.1. Suppose Vi and Va are objects in Qa, and ¢ € Morg,(V1, Va), then ¢ must be injective.
A system of forms {cpgl)}\/m can be viewed as a functor

F : Qs — Rings,

(6) Ve (H S(V™) @ Q> (Dy), (so<V">>>

n=0

where we extend the definition that
n=0,8V°&Q(Dy) = C*(Dy) and ¢} =1
n=p, S(V°) KR Q(Dy) =0 and gog/") =0
Suppose V1, V5 € Ob(9Q,), and ¢ € Morg,(V1, V2) then ¢ is necessarily injective, therefore we get a natural

map which is actually a closed immersion,

Dy, i)DVQ

1

this induces ¢* : Q?"(Dy,) — Q2*(Dy, ), we also have
n d)* n

S(V3') — S(V")
Definition 2.1.1. We say F (or {gogL)}v,n) satisfy the restriction rule if
(7) F6) () = @* @) @) = (o1 - oy )

Here @?V 1y, Teans the Gaussian function corresponding to the positive definite space V-, and ¢* ® ¢*
2

means the pullback map on both the Schwartz function space and form space.

Let’s explain (7) further, here V5" means the orthogonal complement of V5 inside V; under the linear map
¢. Every X € V] has the following decompostion,

X=¢X)+Y
where X’ € V', and Y € (V35)™, then (7) means,
(0*®6%) (X)) = ol (X) - 9y (V)
when ¢ is an isomorphism, we have
(8) (6" ®¢*)ey; = )
This should be viewed as naturality or functoriality property of the Schwartz class we want. Especially,

when ¢ is an linear automorphism preserving the symmetric form on V, i.e. ¢ € SO(V), then this implies
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Lemma 2.1.2. If F satisfies the restriction rule, then

™ e (S(V™) X Q*(Dy)

SO(V) sow)*
) )

~ (S(V) Q@ (DY)

Remark 2.1.1. This lemma enables us to construct a form locally at a point, to be more precisely, we have

the following isomorphism, for any z € D‘J;, Ky is the stabilizer
(S ® 22(Dy)) ) = (s ® @2n(D7) Y~ (S ®) A2p)

We will also refer to this as invariance property.
Next we study how restriction rule affects the harmonic form we get via (5). When U < V is an
F—subspace of dimension p’ and U(R)* < V(R) is positive definite. Then U < V gives us,

Gy — Gy
together with the closed embedding
(9) Dy % D =Dy
we get a compatible system of closed immersion of Shimura varieties (when K < Gy (Ay)) is sufficiently
small)
(10) (M) — (My)

here K’ = K n Gy(Ay). We use superscript V' in <p}/ to indicate

vy € S(V (&)
by the isomorphism,
S(V(Ag)) ~ S(U(A)) Q S(U(Ay))
we assume
f (X,Y) = ] (X) -6 (V)
when g € Gy(Ay), and n < p/, (7) and the definition of the theta distribution (5) implies

"ov(g,g) = Y, i*w(d,9)el” (X)) pf (X))
XeV(F)n

S w@)Fe (Y + 2) oY (Y + g7 2)

YeUL(F)n ZeU(F)n

S W@ e (2 (V) WY (g7 2)Y (V)
YeUL(F)n ZeU(F)n

= 3w @)-He || Y W@l (V) e (Y)
ZeU(F)» YeUL(F)n
(11) =0ul(g,9) 0ur(g)

(11) is the analytic version of the pullback formula appeared in [5] (Proposition 3.1).

2.2. Product rule.

Definition 2.2.1. We say F (or {@&;L)}V,n) satisfy the product rule if for any X = (Xy,...,X,) € V™, we
have

o™ (X) = o (X1) A (Xa) A A pD(X,)

Here the subscript of <pz(1) corresponds to the i—th component of the left hand side of the following map
SV)®S(V)®---@8(V) — S(V")
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Although every component looks like the same, but actually they are not the same! Recall the construction
of the Weil representation, we choose a standard symplectic space W of dimension 2n over F', suppose
€1, en, f1,-* fn is a standard basis, denote W' = spang {e1, - - -, €, }, the Weil representation is realized
on the following space,

SVeW") ~S(V")

Therefore the i—th component is actually S(V ® e;).

Let’s see how the product rule affects the Harmonic form we get via (5). We have the following isomor-

phism,
S(V(Apy)") =~ @ V(Ar)i)
here the subscript ¢ means the i—th copy of V™. Now we pick p5 € S(V(Ap s)™) satistying,

(X1, Xo, - X)) = 0 1(X1)pra(Xa) - prn(Xn)

where ¢¢; € S(V(AFrr);). We also denote ¢; to be the i—th embedding of metaplectic groups,
7 Mp(27AF) - Mp(2na AF)

Then by definition (5), we have

n

o[ [elegor) = Y wil [elal)a)e™ (X) - or(X)

1=1 XeV(F)r i=1

Z Z Z W(gll)@(l)(Xl)QDfJ(g_le)/\

X1V (F) X26V(F)  XneV(F)
w(gh)e™M (Xa)pr2(g7 X2) A A w(gh) e (Xn)ern(g ™ Xn)

(12) =0(91,9,071) AO(g5,9,052) A+ AO(gr,9,05n)

here we add the extra variable ¢ to indicate the dependence of the Harmonic form © on the finite Schwartz

function space. For the rest of this note, we won’t seriously consider this dependence, so we will omit it.

(12) is not only true for the embedding of Mp(2, Ar) in Mp(2n,Ar). It’s also true for any decomposition
of the symplectic space
W =W, + Wy

where W7 and W5 are themselves symplectic and orthogonal to each other. Then we get
vt Mp(Wi, Ap) — Mp(W, Ap)
and

(13) O(1(gy) - t2(95), 9,071 - pr,2) = O(91, 9. ¢71) A O(g5,9,¢5.2)

(13) is the analytic version of the product formula appeared in [5] (Theorem 1.1).

2.3. Theta distribution. In this subsection we explain (5), we will prove the following proposition,

Proposition 2.3.1. when o5 € S(V(Ap ¢)™)¥, then ©(¢', g) is a harmonic 2n—form on the Shimura variety
Shi (G, X).

Proof: We will prove this result both globally and locally. We abbreviate Dy as D.

oGlobally, ™ € (S(V(F ®g R)™) @ 22(D))°® ~ (S(V(F ®g R)") @ 22n(D*)) 4™
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In this case we require g € G(Ay). We can easily verify that for fixed ¢’ € G'(Ar), ©(¢’, g) only depends

on the image of ¢ in the following double coset decomposition,

GQ\G(Ay)/K = |_| G(Q
Each ©(¢’, g;) gives rise to a differntial form on D, which is invariant under the action of I'; = G(Q)ng; ng_l,
ie. O(¢,gj) € H*™(I';\D,C), and we know that

Mg =| |T;\D
J
This is an explanation of the meaning of ©(¢’, g) € A?"*(Mx, C) by explicitly given a global differential form.
It’s better to denote this form simply by ©(g’), we will sometimes use this notation in the rest of this note.

2 Koo
oLocally, o™ € (S(V(F®R)n)®/\ H(P*))

In this case g = gogs € G(A). As we already stated in previous section, ¢™ € (S(V(FQR)") X A" (p*
is the restriction of the global differenrial form on D to the point z € D corresponding to the maxunal com-

pact group K. Then ©(¢g’, g;) is the restriction of the global form we just explained to [g2,gr] € Mk.

3. COMPUTATION OF FOURIER EXPANSION
3.1. Simplification. In this section we calculate the Fourier expansion of ©(g’). By definition,
) 1 b\, 1
(14) O(g') = Z o 0 1)9 )¢F(*§tr(5 +b))db
PeSymnlF) N (F)\N (Ar)

10
We denote ©g(¢') = § @((
W \0 1

rise to a differential form on M. In (14) and the definition of ©g, we can add the variable g € G(A®)

to indicate which component (sightly different with connected component!) are we in. Moreover, it can be

g )Vp(—tr(8 - b))db. It’s easy to see that ©4(g’) also gives

computed by explicit formula of Weil representation that,

Os(g,9) = D, wlg 9™ (X) s(X)
02s

Define Qg(F) = {X € V(F)"|(X,X) = B}, it is stable under the action of G(Q), we consider the

G(Q)—orbits of Qg(F),
=oi = |c@),x

and define

O0,(g9) = D, wlg9)e™(X) - ¢(X)
XeO;

It’s easy to see that ©p,(¢’, g) is invariant on the second variable under the double coset decomposition
G(Q)+\G(Ay)/K, hence it is a closed 2n—form on

G(Q\D" x G(Ag)/K ~ G(Q\D x G(Ay)/K = My

Therefore we have, as closed 2n—forms on Mg,
)= > ©s¢)= > D00l
BeSymy (F) BeSymn (F) 1

Now we focus on the orbit O; = G(Q)+X;. Define U; = Spanp{X;}, the F-subspace of V' spanned by the
component of X;. There are two possibilities,
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(a). rank(B) = dimpU;, we call O; a non-degenerate orbit.
(b). rank(s) < dimpU;, we call O; a degenerate orbit.

Suppose O; is a non-degenerate orbit, we have a decomposition,
V=U+U"
The stabilizer of this decomposition is
H; = GUi X GU.L
where Gy, (resp. Gy1) is the pointwise stabilizer of U (resp. U;). Then ©¢,(g’) can be further decomposed
as,
607; (glvg) = 2 w(gla g)w(n) (X)
XeO;
= > w(g, 9™ (v Xi) - or (v X)
7Gx, (Q)+\G(Q) +

> > w(g ,m9)e™ (VX)) o (vTIXG)
neH(Q)+\G(Q)+ 7Gx, (Q)+\H(Q) +

> D wlg mg)e™(X) - pp(X)

neH (Q)+\G(Q)+ XeU'nO;

We define

Ou.gh9) = D, wlghge™(X)
XeUrno;

It’s easy to see that Oy, (¢, g) is invariant on the second variable under the double coset decomposition
H(Q):\G(Af)/K, hence it is a closed 2n—form on

Ef = H;(Q)\DT x G(As)/K

and

@Oi(glvg) = Z ®U7t(g,7779)
neH(Q)+\G(Q)+
Now we assume further that U; is positive definite everywhere, i.e. § = (X;, X;) is positive semi-definite

everywhere and rank = dimpU;. Then there is a closed immersion,
Dy —> D
hence,
Mg = Hi(Q):\Dy, x G(Ap)/K 5 G(Q)\Dt x G(Ay)/K = Mg
We have the following diagram,

H;
EK

M —— Mg

Where pr is induced by pr: Dt — D; 1, and the fiber of this map can be described explicitly as

pr—1(z) = {oriented, negative 2 — planes contained in z + U ®,, R} n DT

By our notation, pr—1(z) = D;_Ul (we abbreviate U as U®;, R), it’s also easy to show that pr : Eﬁi — Mg‘

+

T+v, over the point [z, g] € M

also has fiber isomorphic to D

One of the most important theorem in [2] (Theorem 3.1) is the following,

Theorem 3.1.1. Suppose O = G(Q), X is a non-degenerate and positive definite orbit of rank t, and o™
satisfies closedness property and invariance property, then
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(i) Ou,(g') is integrable along the fibers of pr : Ef' — M, so the fiber integral (pry)Ou,(g') is a well-
defined closed 2n — 2t form on MII;I Especially, when t = n, this fiber integral is a number.

(i) Moreover, as cohomology classes on My,

[©0,(9")] = ix[(p)+Ov, (9')]
Remark 3.1.1. When t = n, the fiber of pr is a complex manifold of dimension n, the fiber integral
(pr+)Ou,(g') is 0 if O, (g') is not type (n,n). So we will only focus on ™ of type (n,n), i.e.,
™ e (S(V(FR)™) QD)™ ~ (S(V(F@R)") Q) A™" (p*)) =
Remark 3.1.2. U Anisotropic???

3.2. Simplification of the fiber integral. We have reduced the problem of computing the Fourier ex-
pansion of ©(¢’) to computing the fiber integral (pry)Ou(g’), at least for those positive definite orbit.
In this section we compute explicitly this fiber integral for positive definite orbit of full rank, we assume
O = G(Q);+X is a positive definite orbit of rank n, and U = Spanp{X}, U1 = U ®, R, = (X, X). By
definition, for z € Dy1, g€ G(Ay),

pra[Ou(@)([z,9) = pra[ Y, w(@)e™ (V) - ¢rv]([29])

YeUrnO
= D w@)e™ ) ery
pr=1{[z,g]) ¥ V"0
= ] J 7)™ (YY) ory(9)
YEU"mO
Dziuy

Let’s explain these equalities by the following diagram,

Bl = H(Q).\D* x GlAp)/K —— | T\D*
Mt = H(Q)+\Dj. x G(Ay)/K == ||T\Dy,

where the disjoint union ranges over the double coset decomposition,
|_| H +gz

Ou(g')isa (n,n)—formon EX, Oy (g, g) is this form on the component corresponding to g € H(Q)\G(A})/K,
it becomes the g—component of the (0,0)—form, i.e. a function, pry©y(¢’) after doing fiber integral.

Let’s now deal with the fiber integral,

(15) o (¢, Y) = f w(g)e™ (Y)

+
Dz+U1

We can only consider the case ¢’ € G'(R) = Mp(2n,R) x Mp(2n,R) x --- x Mp(2n,R)(d copies corresponding
to every real place of F), because the finite adele part of ¢’ only acts on ¢y, hence doesn’t affect the fiber
integral. We know that,

M) = o) (V) - [ 6, (7

1=2

here 4,0?,7‘ is the Gaussian function of the positive definite space V7,

Y. (V) = cap(—(Ys, Yo)r,) = eap(—r - trf;)
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In (15), we are actually integrating the restriction of w(g')¢™ (Y) to D.,r,, then by the Restriction rule,
since Y, € z + Uy

i*(wvi, (0)0V) (V) = o0, ()0, (Y2,
By Product rule, suppose Y, = (Y7, 1,Yr .2, - Yo n), Yr.i € U,

n 1 1 1
(P,(er)Ul (Yr,) = ‘Pglyml(yn,l) A ‘Piﬁy,l,Q(Y'rl,Z) A -s@ify,l,n (Y7 n)

[2] (Proposition 6.1) proves that, (growth control!! T guess it’s true for Ko, —finite vectors)

n “ 1
| o =T1 | ., (s
=1 +

i
Do, Dz+Y7_1’7¢

Restriction rule and Product rule helps us reduce the computation of of type (n, p) ((n, n)—form on dimension
p complex manifold) integral into the computation of the type (n,n) and then to type (1,1). To make a

small summary, we get

(16) Ko (1,Y) = exp(—7 Z trp;) - H f Wi?yn’i(yn,i)
j=2 i=1_,
Dz+Y

i

Remark 3.2.1. (16) holds only when we have the Product rule. However, the product rule is not known to
w(g)p ™ (Y). That’s why the left hand side is g’ = 1.

Remark 3.2.2. Although we don’t have a nice decomposition of (16) type, it’s simply by definition that,
’iap(”) (gl7 Y) = Kw(g/)@(rrl) (].7 Y)

Our hope is that ™ behaves well under Weil representation, so we can relate o™ and w(g’)w(") by some
simple formula, hence for their fiber integral.

Actually this hope is already true for parabolic subgroup of G'(R). Since G'(R) is generated by the parabolic

0 1,
w:(<_ln O),l)

whose action on Schwartz function is Fourier transformation. Therefore we expect the Schwartz function

subgroup and

coefficients of o™ to be Hermite polynomials which are invariant under the Fourier transformation.

3.3. Computation of the fiber integral in the case (1,2). In this subsection we explained the compu-
tation of the fiber integral
J SDSJZX(X )
DI x
z + X is real vector space with a non-degenerate quadratic form (, ) of signature (1,2), X is a positive
vector. By definition,

D+

~+x = {oriented,negative 2 — planes contained in z + X} N Dt

In this case, it’s better to describe D;r  in the following way,
D;_X = a connected component of {oriented, positive 1 — lines contained in z + X}
We choose a basis for z + X as follows,
x = (X,X)*%X,zl €2,29€ 2

s.t., v = xoxr + 121 + T229 has norm
(v,v) = af — 2] — 23

. . +
then we have a clearer description of D y,

DLX ~ {(zg, 21, 22) |x% —m% —x% =1, zy > 0}
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this is the hyperboloid model H?, we can also identify the tangent space at 2’ € D:Jr ¥ as,

+ ot
TZ(DZ+X ~Z

the canonical metric on this tangent space is —( , ). (H?, —( , )) is isometric to upper half plane (Hy, y~2(dz?+

dy?)). Next we will try to compute the fiber integral of a form in the following space,

(17) P € (S(z + X) @OV (D24 x))T0? = (S(z + X) @ QM (DY, x)) 50"

(18) ~ (S + X)® ()50

here the second isomorphism is restricting the global form to a point 2’ € D;ﬁr v b TZ/D;Zr x is a Lie

subalgebra of s0(1,2), and exponential map gives a differeomorphism between p and D;r - With the basis

we have already chosen, s0(1,2) can be identified as,

0 T1 i)
50(1,2) ={]x1 0 =z |]|xe, 22,2z eR}

o —z 0

we choose the base point 2’ = z = (1,0,0), then p can be identified as

0 r1 X2
p:{ xr1 0 0 |.Z‘1,.’L‘2 ER}
T2 0 0
and the isomorphism p ~ T/ D7, y is,
01 0 0 0 1
1 0 0]—(0,1,0) O 0 0|~ (0,0,1)
0 0 O 1 0 0

hence we can identify p* = Spang{z1, 22}, then a general element in the space (18) is of the following form,
M (wom + w121 + wa29) = f(25) - g(aF + 23) - exp(—m(af + 23 + 23)) - day A da

where f and g are one variable polynomials. Since D, x has complex dimension 1, this form is automatically
closed. Particularly, if we evaluate this at X, we get,

P (X) = F((X, X)) - eap(—n(X, X)) - day A dxa = (9 (X))

For other points in D, x, we have the following

Lemma 3.3.1. For 2’ € D;_X a positive vector with norm 1, suppose gz = 2’ for g € SO(1,2)", then we
have,

(P (X)) = F(X,2) - g((X, 2) = (X, X)) - eap(=m(X, X)) - (6%) " (da1 A d2)
here (X, X). = 2(X,2') — (X, X) and (¢g%)""(dz1 A dxy) is the volume form of DY, y at 2.

Consider the following coordinate change,

(0,+0) x §* =% DF,
(r,0) —> (ch(r), sh(r)cos(0), sh(r)sin(9))

this is actually (0, +00) x S — p =5 D;X. Under this coordinate change, it’s easy to verify that

(* (M) (X)) o) = FUX, X)eh(r)?) - g((X, X)sh(r)?) - e=2r XX g (1) drdg

then
~+00

Km (1, X) = 2me™ ) J FUX, X)eh(r)?) - g((X, X)sh(r)2) - e 27Xk oy (1) g
0
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take the change of variable u — ch(r), we get,
+00
Ko (LX) = 2060 [ (X, X002) - (X, X0 = 1)) e 200
1
these calculations suggest that the following function is important for our computation,
+o0
(19) h(t) = J FE2u2) - g2 (u2 — 1)) - e 27w gy
1

we have shown that 0 (1, X) = 2me™ XX p((X, X)?) only depends on (X, X). Then (16) becomes,
- Y trB; O

Koo (LY) =€ = [ [2rem Y dn((Y,, 4, Ve, 0)?)
1=1
-7 X trB; n B 1
=@mre T [ [T h((Bua)?)
=1

It’s natural to hope that the function h(t)ezm2 in the product of RHS is a constant, i.e., h(t) is a (constant

multiple of) Gaussian, if this is true, suppose h(t) = %6_27”52 (the constant is chose to be 5= to eliminate
(2m)™), then the Mellin transform of h is
+00
1 T(3)
20 T h(t)dt = — 2
(20) f Ot = 5 S ams
0

On the other hand, if we compute the Mellin transform directly form (19), we get
+o0 +00 +0
J t5~Lh(t)dt = J J vl f () g(v? (1 — u72))672’”’2dudv
0 1 0
For simplicity, we assume ¢ is constant function 1, then this becomes,
+00 +0 +o0 +o0
f t57Lh(t)dt = f J vs_lu_sf(v2)6_2”2dudv = % J vs_lf(v2)e_2”2dv
0 1 0 0

Since f is a polynomial, it’s easy to compute the following “single” integration,

+0 r(s )
5+n
(21) J o5 Ly2ne—2m® g~ \2 _
2(2m)ztm
0

we take linear combinations of (21) to eliminate s—1 and try to get the RHS of (20), then a simple calculation

shows that the following function is the one we need,

1
F(r) 21— =
2m
and h(t) = ie’z’”ﬁ by this choice. Moreover, (16) becomes
(22) Ky (1,Y) = exp(fﬂZtrﬂj)

J

[need to be added, general formula for ¢')

4. CONSTRUCTION

Suppose V is real quadratic space with signature (n,2), In this section, we will give the construction of

a reasonable Schwartz class satisfying condition 1,2,3,4. Calculation from the last section tells us that, a
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reasonable Schwartz class in the case of signature (1,2) should take the following form,

(23) (PV(X)): = (2(X,2) — 5-) - eapl(—n(X, X).) - dV.
(24) = (X, X) + (X, X): — 5 Jeap(~n(X, X).) - V.

where dV is the volume form of Dt. We will give two constructions, the first one is based on this known
case (1,2), and uses G(R) (or Ko) invariant property, closeness property, the Restriction rule. The second
one is the construction appeared in [1] using Howe operator. We will see finally that these two constructions

coincide.

4.1. Construction from the known case. We don’t have a very explicit description of the hermitian
symmetric domain D‘J; when p > 1, but a large part of the analysis of the case p = 1 can still be done.

As in the introduction, we fix a z € D{’, and an oriented orthogonal normal basis {21, 22} of z, which
is unique up to SO(2) action. Then z* is a p—dimensional, positive definite subspace of V. We also fix
an oriented orthogonal normal basis {wi,ws,- - -,w,}, which is unique up to SO(p) action. We have the

following identification,
(25) p~T.Dfs ~ Homp(z,V/2) ~ 2* @2+ ~ 2@ 2+

here p = so(p,2)/(s0(p) @ s0(2)), with the basis we have chosen, it can be identified with the following

matrices,
0, A
p= {(Ai 02) | A€ Myea(R))
the isomorphism (25) can be made explicitly as follows,

z®zLi>p

)

We use w;; to denote the coordinate function of p w.r.t the basis {w; ® zj =: vij}7 then w;; make up a basis
of p* over R. We also use x1, 22 to denote the coordinate function of z w.r.t the basis {z1, 22}, and y; to
denote the coordinate function of z+ w.r.r the basis {w;}.
Lemma 4.1.1. The almost complex structure on TZD‘J; 18 given by
Ip
Ad 0 -1
1 0

Lemma 4.1.2. The canonical Riemannian metric on T, Dy, can be identified with the negative of the metric
on z® 2+ induced by (, ) of V. The Chern class of the canonical line bundle on Dy is

p
QZZWH N Wi

i=1

The Schwartz form we are finding is of the following form,

p
(26) Py (X) = Y Fi(X)ed (Xwin A wiz + 35 93 (X)pi (X)win A wi
i=1 i#]
(26’) + Z hij (X)(p{’;(X)wzl AN wjl + Z kij (X)QD‘-;(X)(JJQ N ong
i#j i#j

here ¢ (X) is the Gaussian function on V w.r.t the quadratic form ( , ).. Our main result in the section is

the following,
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Theorem 4.1.1. Based on the case p = 1, and by Ky —invariance property and Restriction rule, we can

obtain (up to a nonzero constant)
fiX) =yi - o
9i5(X) = yiy;
(26") =

Moreover, with these choices, go( )(X) is closed.

This theorem tells us that the general case is determined by the case p = 1, and at point z € D‘t, it takes

the following form,

p
(27) (pg}) (X) = <Z wll A Wjio + Z Yiljwit A w]2> . e—ﬂ'(X,X)z
=1 i%j

S R T

Proof: First we consider the subspace V; = z + Ruw;, this is of signature (1,2), we have
(29) D{, < DY
then by Restriction rule,
1
(WF — 32) -0 (%) = 5oy (X)(vir, via)
= [i(X)e{(X)

then we get the result for f;, but we can choose another base of z* by applying an element in SO(p), suppose
we have
(wll7w/23 . aw‘;) = (’LU17’LU2, o 'awp) A

then for coordinate functions, we also have

(yllvy/Za t 7?»/;7) = (y13y27 c 'ayp) A

Now consider (29) for V; = z + Rwj, by restriction rule, we get

< Z ajiy;)? — > oy (X) = J*QS)(X)(UQMU%)

P P
)(Z Aj;Vj1, Z akivkz)
j=1 k=1

= Z ajianipl (X) (01, vps)

(Z all — 47_‘_ + Z a]zakzg]k(X)> (p¢(X)

J#k
then it’s trivial to see that we must have the expression for g;;. Actually, this computation is equivalent to
saying that gp%,l) is SO(p)-invariant. Now let’s check

P
1
e(X) = (Z(yf - E)w“ A wig + Z YilYjwin A wj2> e (XX
=1 157
is SO(2)—invariant. Consider the following action of SO(2) on z,
21 = cos(@)z1 + sin(a)za

21 = —sin(a)z1 + cos(a)zz
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then it’s easy to see that,
wiy = cos(a)wiy + sin(a)w;s

Wiy = —sin(a)w; + cos(a)w;z

and
Wip A Wiy = cos(a)?wii A wjo — sin(a)’wis A wi1 + sin(a)cos(a)wia A Wiz — sin(a)cos(a)win A wj

under this action, ¢(X) becomes,

p
1 —Tr
‘P(X)/ _ (Z(yf — E)wgl A w;Q + Z yiijz’.l A w;?) e T(X, X)),

i=1 i#]

47

P

1 . _

= ( (yf — —)wi1 A wig + 2 yiyjcos(a)zwﬂ A Wiz — sm(a)2wi2 A wj1> e (X X)2
i=1 i£j

+ ( sin(a)cos(@)wia A wjo — sin(a)cos(a)wii A wﬂ) e XX
i#]

P

1 —T

(30) = (Z(Zl? - 47T)Wi1 A wiz + 2 Yiyjwii A wj2) R ¢(X)
i=1 i#j

Since @9)()() = p(X)+(26) is Ky = SO(p) x SO(2)—invariant, and ¢(X) is already Ko, —invariant, (26”)

must be Ky —invariant. Under the same SO(2)—action,

(26") = (Z hij (X" wiy A wg»l + ki (X wiy A w.;-2> o (X)
i#]

= (Z hij (X )eos(a)?win A wjt + hij(X')sin(a)?wiz A w]g) o (X)
i#j

+ (Z(hij(X’) — h;i(X"))sin(a)cos(a)wir A wj2> o (X)

i#]

+ (Z kij (X' )cos(a) wia A wis + kij(X)sin(a)?wir A wj1> o (X)
i#]

(31) - <Z(kij(X’) — kji(X"))sin(a)cos(a)wir A wj2> o (X)
i#]
since (26’) only involves w;1 A wj1 and wie A wja, we get
hij = hj;
kij = kji
this symmetry condition implies that the summation in (26’) is 0. Then we get all the identifications in the

theorem. Next we show <p§,1)(X) = (X) is closed.

(32) d= Zw(vij) ®wij/\

,J
where w;; A is left multiplication by w;; on the exterior part, w(v;;) is the infinitesimal Weil representation
on the Schwartz function space,

(wlvg) H)(X) = df (X) - ( - ) X
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Now we use formula (28), and

,J
( %2) = ijw” A Wj2
4,7
then
(1) 3 L 1
0000 = a( (S ) o (B - ) emexm,
=1 i=1
p P 1
+ Z Yiwir | A Z Yiwiz | — EQ A d(e”™ XXz
i=1 i=1

it can be shown that

4.2. Construction by Howe operator. In this section, we follow [1] closely to give another construction
of the Schwartz class. In [1], Kudla and Millson use the Howe operator defined as follows,

) 7= (5 ( -2y ouan) (£ (2 ~2m) o)

this operator acts on S(z*), and we can find that,

(1) _ .
Yy =P VPt

where ¢, (resp. ¢.1) is the Gaussian function on z (resp. z1). Our main goal in this section is to understand

the construction of this operator in a much more general setting.

Our initial goal is to find a Ky —invariant class in the following space

V)& A%p*
where V is of signature (p,2). Now we work more generally on V' of signature (p, ¢), and fix a decomposition
V =V, + V_, where V; (resp. V_) is positive definite (negative definite). We want to find the Ko ~
SO(V,;) x SO(V_)-invariant inside the following space

SV @ A"p*

or more generally, in the following algebra

S(V™) ® A"p*
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here p is the tangent space at z = V. of the associated symmetric space Dy,
p~ HOmR(Vf,V/Vf) ~ V:k ®V+ ~ V_ ® V+

o Step 1. We consider the Gaussian function gp?/f (resp. w?,r) associated to V™ (resp. V). We have the
following injective map

i: Sym(VF") (X) A"p* — S(V™) (X) A"p*
f®v— fehnpln ®v

Since cp(‘)/f go(‘)/r is Ko —invariant, by multiplying it, we transfer the question of finding the invariant on the

right hand side to finding invariant on the left hand side.

o Step 2. We consider the problem of finding the SO(V, )—invariant first, since SO(V,) = K, acts

trivially on V_, we focus on the following space,

(34) Sym(VE™) (X)) a"p* ~ Sym(V]) (X) A"p*

Note that we get a trivial K, —invariant element here, namely, 1 ® 1. The idea is instead of finding an
invariant element directly, we try to find invariant operator 57 on this space, then applying the operator on

1® 1, what we get is also K —invariant element.

o Step 3. Now we use Theorem A.3.1, it gives us a system of K —invariant operators on the space (34).

In the language of Appendix A.3, we make the following choice,
X=V+a ‘/E)=V,*+V,

W still denote a symplectic space of dimension 2n, we use (51) as a standard basis. The symmetric form on
Vo is given as follows, recall that we choose {z1, 22} as a basis of V_, and {x1,z2} as a basis of V_, z; is the

coordinate function of z;. Then,
(Zi,Zj) = (1'i71'j) = 0, (zi,xj) = 5ij

this choice of symmetric form makes Vj into a split orthogonal space of dimension 4 over R. We also set
V* = (Vo)1, V= = (Vp)2, under this choice,

Wy =W Ve~V Vi=Vo)i @ Vi 2VIQV, ~p
and the algebra (55) becomes
Sym(VE") X) A"p*
which is exactly (34). This algebra admits an action by the following Lie superalgebra
-8+
8" =spW)c @o(V)e, §' = (W@ V)c

and the centralizer of o(V, ) inside g is given by

r=r%+r1"

I =sp(W)c@o(Vo)e, I' = (W@ Vo)e

T also generates the SO(V)—invariant operators in To.;(W, V) € Endc(Sym(VE™) @ A"p*).

The action of T" is given by,
(35) sp(W)c @ o(Vo)e = sp(W) @ o(V) 723 Ende(Sym(Vi™) Q) A"p*)
(36) (We® Vo)c = (W V)c 25 Ende(Sym(VE") ) A"p*)
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We focus on the action of (36), more precisely,
(37) W@ Vo)e = We® (V) ® (We® (Vo)e)
(38) W®V)c = We® (Vi)e) ® (We® (Va)c)

Every element in the second summand of (37) and (38) raises the degree in the wedge part by 1, by the
formula (54), and

We® (Vo)e = (Wi ® (Vo)e) ® (W2 @ (Vo)c)
and the action of W1®(V_)¢ is 0 by the construction of oscillator representation. Therefore the only interest-
ing part of (37) is Wa®(V_)c , it has complex dimension ng, therefore raise the “obvious” SO(V, )—invariant

element 1 ® 1 to the degree nq in the wedge part, which is exactly what we want.

W5 ® (V_)c has the following basis,
(39) wy ®zj, 1<i<n, 1<j<q

it is mapped to the following element in (W ® V)¢
P P
Z(w%@wk) (2; @ wi,) Z Wa; @ wi) @ Vi
k=1 =1

this element acts on the Schrédinger model S(V}') Q) A"p*

P

0
gl(ayki — 2T Ypi) @ Wij A

here k indicates the k—th copy of V*. Then we define the Howe operator of type (p,q) to be

n q P a
(40) Ve =111 2.¢ e 27 ki) ® Wij A

i=1j=1k=1

This operator corresponds to the action of the one-dimensional space
(41) A (W2 ® (V-)c)

especially when ¢ = 2, n = 1, (40) agrees with (33).

Finally, at the point z = V_ € Dy, the Schwartz form we want can be expressed by

(42) e =l oY

We already know that this is a ng—form, and invariant under the action of SO(V,). Now we consider the
action of SO(V_),

(n)

Proposition 4.2.1. ¢’ is invaraint under the action of SO(V_). Therefore,

~(n Vn ® /\nqp

Proof: ¢, is obviously invariant under the action of SO(V_), so <pV is SO(V_)-invariant is equivalent
to Vﬁ,qw9/+ is SO(V_)-invariant, we prove this by arguing that 7)) , is SO(V_)-invariant. But SO(V_-) acts
on Wy ® (V_)¢ by changing an oriented basis of V_, hence leaves (41) invariant, hence leaves the operator

no: .
Vp,q Invariant.

Lemma 4.2.1. When q = 2,n = 1, the Schwartz form (42) constructed via Howe operator equals the form
constructed in Theorem 4.1 up to a nonzero constant, i.e.

(1) (1)

Vp72g0V = 167T QDV
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5. UNIQUENESS OF SCHWARTZ FORM

5.1. Uniqueness theorem. Continue with previous notations, we assume V' is a finite dimensional vector
space over R, equipped with a non-degenerate bilinear symmetric form of signature (p,2), p = 1. For every
such V', we consider the following space

SV Q" (DY)
Our main goal is to find a system of elements in this space satisfying 1,2,3,4 in section 2, because then

this element will give rise to a Harmonic form on the Shimura varieties via theta distribution (5) by 1,2,

compatible with the natural closed immersion (11) by 3, and wedge product (13) by 4.

In section 2, we consider the case p = 1 and n = 1, and find that in this case if we choose the form to be

1
oM = (y? - o Jwi A wa
vy

Then the fiber integral (19) is easy to compute and we get a clean result (22).

In section 3.1, we construct the Schwartz form for general p and n = 1, we first use restriction rule
and the known case p = 1 to determine some coefficients of the form, and then use G(R)—invariance (i.e.
Ky —invariance) to determine the others. Then in section 3.2, we construct the Schwartz form by Howe

operator, and the result coincides with 3.1

It’s a natural question to ask whether there exists other systems of forms satisfying 1,2,3,4. We will
prove in this section that there are essentially no other forms satisfying all these four conditions. Firstly,
The product rule tells us that we only need to find a form satisfying 1,2, 3 in the case n = 1. We consider

the following dense subspace of Schwartz functions,

S(V) ={P(X) - p{»(X)| P is a polynomial function on V} < S(V)

Theorem 5.1.1. There is a unique (up to a nonzero scalar) system of elements {tpgl)}vm
A e SV @ 0P (DY)

s.t. 1,2,3 holds for these elements.

Or equivalently, There is a unique (up to a nonzero scalar) system of elements {QDS)}V
ey € S(V) @ (D)

s.t. 1,2 holds for these elements.

Proof: We prove the second statement. As before, we fix a z € D‘J;, an oriented orthogonal normal basis
{z1, 22} of z and coordinate function {z1, 22}, and an oriented orthogonal normal basis {w1,ws, - -, wp} of

2+ and coordinate function {y;,a,- - -, Yp}, using the isomorphism,

(S(V) @ DY) ® = (S(V) @) A%p*)=
From now on we work in the space on the right hand side (as we did before). We use w;; to denote the

coordinate function of p w.r.t the basis {w; ® z; =: v;;}, then w;; make up a basis of p* over R. The Schwartz

form we are looking for is of the following form,

(43) PP (X) = Y LX) (Xwin Awiz + Y 05 (X) e (Xwin A wyo
i=1 i%j
(37’) + Z hij (X)<p$(X)w11 AN wjl + Z kij (X)@";(X)wzg AN ng

1#] 1#]
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Now we consider restricting this form to the subspace V; = w; + z, this subspace has an oriented orthonormal
basis {v;1, via},
D:; +z D\t

then the restriction rule (7) tells us,

1 1 N
L?@E/)(Il,Q?Q?y) = SOSUI-)Jrz(xlva?yi) . QO‘-ZL(yhyQa o Yiy '7yp)

By the SO(z)—invariance, @83“(331, Z2,y;) should take the following form,

1
oW, (@1, m0,0:) = Fy)g(@? + 23) - i (21, 22, 9,)

here f,g are both polynomials, and f is independent of i because of the naturality property (8) following
from the restriction rule. Now we consider the value of both sides at vector pair (v;1,v;2), we get

(‘Pgul)ﬂ(xhIz,yz)(vmwz)) : @\t(xl,ﬂ?m yi)fl

= f(ys)g(x} + a3)

Now we consider the SO(V,) action on the form (43), under the basis {w;}, we choose A = (a;;) € SO(V}),
then

f’i(xlva;y)

P p p
= Z ki Wk vé,» = Z AkiVkj, Yi = Z AkiYk
k=1 k=1 k=1
A€ SO(z*) acts on (43) by

P
A (X) = DT FAX)g(AX )i (AX)wly AWy + Y. gii (AX) @ (AX )y A why

i=1 i#j
(44) + ) hij(AX) e (AX)wly A why + D ki (AX) o (AX)w)y A why
1#] 1#]

By SO(z1)—invariance, we have
Ar ) 0

evaluate both sides at the vector pair (v}, v}s), we get

p
FO aniyn) - 9@ +23) = oV (X Z kU1, Z AkiUk2)

p
= Z aj; f(yx) - g(af + x3) + Z ajiaiigi(z,y)
k=1 il

divide both sides by g(z7 + #3), and denote g}, = g(x‘gﬁ, we have

p
FO . arik) Z arif () + ) agiciigy(x,y)
k=1

Jj#l

for each pair j # [, it’s easy to find an element in SO(z") such that only g;-l survives in the second term of
the right side (e.g. rotate by 7 by the plane spanned by w; and w;). Then we see that gJ; depends only on
y, and it’s a polynomial functions in y1,ys,- - -, yn. The previous equation becomes

p
(45) f(Z kiYk) Z akz (yr) + 2 agzalzgjz
k=1

Jj#l

then since f and g;.l are polynomial functions, by Lemma (5.1.1), up to a constant multiple,

f(T) = T2 + a, g;l(TlaT%' : ',Tn) = Tj,Tl
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for some a € C. Therefore we have simplified (43) to the following form,

P
(46) o\ (2,y) = (Z(yf +a)wi A wi + ) Yiywin A wj2> -g(x + 23)v (X)
i=1 i#£]
(467) + Z hij (X) oy (X)win A wjr + Z ki (X) oy (X wia A wi
oy i)

Now we consider the SO(V_)—invariance, the same computation and argument in (30) and (31) implies (46)
is SO(V_)—invariant, and

hij = hﬂ
kij = kji
i.e. (46’)=0. Therefore (43) takes the following form,
p
(47) oy (.y) = (2@3 i A wi + D)y A wﬂ> g(ad + a3) el (X)
i=1 i#£]

Now we consider the closedness condition, we rewrite (47) as

oW (@) = (6 +aQ- o) - g

P
Q= Z Wi1 N\ Wi2
i=1
we know that § is the Kéhler form of Dy7, it’s closed. Then by applying the d—operator (32),

where

and

(48) dga()—(a+4—)(Q/\dgpv)'g+(¢+aQ-<p";)Adg

the closedness condition is reduced to the computation of dgp$ and dg.

p p
dpy, = Z w(vj1)ey - wjr + Z w(vj1)ey - wji

= —47r<p¢ (Z 1Y - wji1 + Z xgngp‘t ~wj2>

Jj=1 Jj=1

p p
=Zwvg19 wj1 + Z w(vj1)g - wj1
j=1 j=1
p
=g | D mys - wpn + Z Tayj - Wi2
j=1 j=1

then the first term in (48) is

1
(a + E) (QAdet) -g=—(1+4ma)eyr - g- <x12iji1 A Wi A Wyt + ngijﬂ A Wig A wj2>
i.j 0,J

the second term in (48) is

p P
(p+aQ-¢f) -dg=aQ ¢ -g - (leyj'wleFZl'Qyj'wﬂ)
Jj=1 J=1

=+ /
=aPy - g - (3?122/]%1 A Wiz A Wit + xQZijzl A Wiz A w]2>
2] ,J
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Note that

T1 2 Yjwil A Wiz A Wil + T Zijil A Wiz N Wj2
i i,J

= Z Il(yj - Z/i)wil A Wiz A Wit + Z Iz(yj - yi)wil A Wiz A Wj2

i<j i<j
is non-zero, then we necessarily have
(49) (ag’ — (1 + 4ma)g) - o3> = 0

If ¢ is not a constant, then deg(g’) < deg(g), we must have 1 4+ 4wa = 0, but then ag’ = 0, since g is not a
constant, a = 0, which is a contradiction. Therefore we must have g is a constant, then g’ = 0, this implies
1+ 4ma =0, ie a=—=. This finishes the proof the theorem.

Lemma 5.1.1. If f and g;-l are both polynomial functions, then the only solutions (up to nonzero constant)
to (45) are given by
f(T) = T2 + a, g;'l(TlaTQv t aTn) = chrl
for some a € C
Proof: We make a particular choice of A € SO(V,)
Aw; = cos(0)w; + sin(0)w;
Aw; = —sin(0)w; + cos(O)w;
then (45) becomes,
Fleos(0)y: + sin(B)y;) = cos(0) f(y:) + sin(0)* f(y;) + cos(0)sin(0)(g5;(y) + g5:(y))

suppose f(T) = 3,,=0 cmT™, then set y; = +/—1y;, and suppose (g;; + 95;) (i, V—1yi) = > amyj", we get

m=0
Z cme™oym = Z ((003(9)2 + (—=i)™sin(0)?) e + cos(0)sin(0)a, ) y"
m=0 m=0
therefore by comparing coefficients,
(50) cme™? = (cos(0)? + (—i)™sin(0)?)cm + cos(0)sin(0)am, Ym =0, V0 e R

For m # 0,2, the only possibility for (50) to hold is ¢,,, = a,,, = 0 (view 6 as a complex variable and compare
degrees). This concludes the proof.

5.2. Interaction with Weil representation.

APPENDIX A. SPIN-OSCILLATOR REPRESENTATION

A.1. Oscialltor representation and inifinitesimal Fock model. In this appendix, we construct the

infinitesimal representation associated to the Weil representation at the Archimedean place. Suppose (W, <

, >) is a symplectic space of dimension 2n over R, we fix a standard basis {e1,ea, - -, en, f1, fa, - -, fn} for
W, ie.
(51) < €4, €5 >=< fz;f] >= 0,<€i,f]‘ >= 61]

There is a complex structure on W given by
J:W—W
e — fi, fi— —¢€
We then have the following Hodge decomposition,
W g C=W; + Wy
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where
Wi = spanc{wy; = e; —if;}_;
Wy = spanc{ws; = e; +if;}}_q

It’s easy to check W; and W5 are dually paired Lagrangians of the symplectic space W ®r C. We use z; to
denote the following linear functional on W7,

zj(w) =< w,we; >

then z; spans the space Wi.

Lemma A.1.1. There is a isomorphism between Sym?(W) and sp(W) given by
Sym*(W) = sp(W)
zoyr— p(zoy)
where xoy =@y +yQx, and

olzoy)(z) =<z,z2>y+ <y,z>zx

Remark A.1.1. Under the symplectic basis we are using, we identify sp(n) with the following

A B

sp(n>={<c A

t) |B,C € Sym,(R)}

under the isomorphism @,

€; O €j —> <8 Eij J(;Eﬂ>

0 0

—Ey; 0
elofj — < 0 EJ)

Definition A.1.1. For A € C*, the Weyl algebra W associated to (W, < , >) is

_ T(W ®g C)
A7 ideal generated by t@y —y®xr — A < x,y >

Remark A.1.2. There is a natural filtration FPW on W inherited by the degree filtration on the tensor
algebra T(W), and it’s easy to check that

[FPWy, FIW,] c FPTI2W,

where [ , | is the Lie bracket on the associated algebra W . Therefore F*W  forms a complex Lie algebra.
There is natural isomorphisms,

F*W,/F'W ~ S2(W)¢ ~ sp(W)c
We can even define a spliting homomorphism between Lie algebras,

jisp(W)e ~ Sym?>(W)e — F*W

1
roy— —ﬁ(fchrny)

Now we consider the left ideal Z of the Weyl algebra W generated by W7, then it’s easy to see that,

W,/Z ~ Sym(Wsy) ~ Sym(Wi*) ~ C|z1, 22, - +, 25|
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there is a natural action py of W on W, /Z, hence on C[z1, 29, - - -, 2, ], by left multiplication. It is given

explicitly by

0
pa(wij) = 22Aa—zj

pa(wz2;) = z;

then we can construct a representation of Lie algebra sp(W)c via j, i.e. ox = pxoj. Note that Sym?(W ®g
C) ~ Sym?(W1) ® (W1 ®c Wa) ® Sym?(Ws). oy can be given explicitly by

52
: — 4\
O’)\(wlj o wlk) aZJaZk
1
ox(waj 0 way) = —ijzk
) 0 0
O’)\(’wlj [¢) wgk) = —Z(Zkafzj + ZJaTk)

It’s natural to ask whether this Lie algebra representation gives rise to a Lie group representation, this is
not a trivial question because the representation space C[z1, 22, - - -, 2, ] is infinite dimensional. It turns out
we should consider a larger space, before we state the result, let’s first consider the relation between oy and
the Weil representation of Sp(WW) on the Schwartz space S(R™). The Heisenberg group H(W) = W x R acts
on S(R™) with central character

ew:R— C*

t e27r7,t

it is an irreducible representation of the Heisenberg group, and the associated infinitesimal representation is
given by

w(e;j) = ai

Lj
W(fj) = 27T’é$j
It’s easy to verify that,
w(e;) ow(f;) —w(fj) owle;) = 2mi < ey, f; >
therefore w extends to a representation of Wo,;. Now we compare w with og;
Theorem A.1.1. There exists an injective W o,; —intertwining operator

t:Clz1, 22, -+, 2] — S(R™)

s.t. 1 is mapped to the Gaussian pg on R™, the image is a dense subspace of S(R™)

Proof: We consider the subrepresentation S’ of w generated by the Gaussian ¢g. It’s trivial to see that
W1 annihilates g, hence
S = Wari - 0o ~ Wori/T ~ Clz1, 20, - -, 2]
Remark A.1.3. It’s easy to check that S’ is exactly the space of Hermite functions, i.e.
S8 = {P(z) - ¢o| P is a polynomial}

it is said in [3] that this subspace is exactly the U(n)—finite functions of S(R™).
Now we find the right space to extend the Lie algebra representation to Lie group representation,

Proposition A.1.1. oa,; gives rise to a representation on the Schwatz space S(R™) of the complex symplectic
group Sp(W)(C), also a representation of real group Mp(W'), which is a double cover of Sp(V).
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A.2. Spin representation. Most of the results in this section is parallel to the previous one. Suppose V

is a finite dimensional vector space over R, equipped with a nondegenerate symmetric bilinear form ( , ).

Lemma A.2.1. The following map is an isomorphism
A2V 25 0(V)
T Ay — ¢z AY)
where
¢z Ay)(2) = (2,2)y = (y,2)x
Definition A.2.1. For X € C*, the complex Clifford algebra 'V associated to (V,( ,)) is

Vi = T(V®g C)
A7 ideal generated by t @y + y®x — \(z,y)

Remark A.2.1. Contrary to the Weyl algebra associated to a symplectic space, Clifford algebra is of finite
dimensional 24 =V over C.

Remark A.2.2. There is a natural filtration FPV )y on V) inherited by the degree filtration on the tensor
algebra T(V'), and it’s easy to check that

[FPVy, FIV,] c FPTI=2V,

where [ , ] is the Lie bracket on the associated algebra V. Therefore F?Vy forms a complex Lie algebra.
There s natural isomorphisms,
FQV)\/Flv,\ ~ /\QV(C >~ O(V)C

We can even define a splitting homomorphism between Lie algebras,

jro(V)e =~ A%(V)e — F?2V,

1
Toyr— —5($y—yw)

Suppose there exists a basis of V| {uy,ug, -, upn,v1,02, -, v,} s.t.
(52) (uivuj) = (Uivvj) =0, (ui,vj) = (Ujaui) = 5ij
define Vi = spangu;l"_,, Vo = spangv;?_;. We use o (resp. f;) to denote the coordinate function on V;
(resp. V2) of u; (resp. v;). Now we consider the left ideal [J of the Clifford algebra V generated by V7,
then it’s easy to see that,
Va/T =~ A(Va)e = A (Vi)c
this gives a natural action py of V on the wedge algebra A (V;*)c, it is given explicitly by
(54) pa(vj) = ;A
here I,,; is the interior multiplication on the wedge algebra
(L, FUX) = f(u;, X)

Therefore by the splitting map j, we get a representation of o(V) on the wedge algebra A(V*)c, i.e. o) =
pa © 7, and it is given explicitly by

A
ox(ujouy) = _§(IUquk — Iy, 1)
1
O')\(’U,j ] ’Uk) = QN Iuj - §6jk

1
ox(vjouvy) = ﬁ(ak AQj A —Qj AQpA)
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from these formulas, we see that u; o uy lower the degree by 2, u; o vy keeps the degree unchanged, v; o vy

raise the degree by 2. Since the wedge algebra A (V}*)c is of finite dimensional, we have

Proposition A.2.1. o) gives rise to a finite dimensional representation of the complex orthogonal group

SO(V)(C), also a finite dimensional representation of real group Spin(V'), which is a double cover of SO(V).

A.3. Ortho-symplectic algebra. In this section, we combine the construction in the previous two sections

together and construct a representation which is important in finding the K, ,—invariant.

Suppose (W, <, >) is a symplectic space, and (V,(, )) is a symmetric space, we use w (resp. v) to

denote the vector in W (resp. V).

Definition A.3.1. For A € C*, the ortho-symplectic algebra associated to (W, <, >) and (V,(, )) is

T(WoV)®rC)

KWy = RV +v Qv —Av, V), w@w —w Qw —\ < w,w >wRv—vw}

Then we know from the previous two sections that when V is split orthogonal, i.e. admits a basis of the

form in (52), 7, (W, V) admits an action on the following algebra
(55) Sym(Wi) Q) AV e
i.e. we have a homomorphism of associated algebra,
(W, V) — Endc(Sym(W7) ) AVi*¢)

we use Tx(W, V) to denote the image of this homomorphism.

TA(W, V) also admits a degree filtration inherited from the tensor algebra, heuristics from previous two

sections motivate us to consider the degree 2 part, the natural bracket on the associated algebra gives,
[FPTA(W, V), FATL(W, V)] € FPH=2 T3 (W, V)
therefore F2T,(W, V) is a Lie algebra. We have the following isomorphism
(56) F*T\(W,V)/FYTA(W, V) ~ Sym*We @ AVe @ (W V)e
and the splitting is given by
§:Sym*We @ A2Ve ® (W RV)e — F2TH(W, V)

wow —> fﬁ(wwurw'w)
vov —s —i(vv' —v'v)
2\

1
vowr— ——(vw + vw)

2\
By the identification

sp(W) ~ Sym?W, o(V) ~ A%V

we therefore obtain an Lie algebra representation of sp(WW)@®o(V) on (55) when A = 27i. Actually we can get
more, with the Lie bracket given by the embedding j, the space (56) admits a structure of Lie superalgebra,
we denote it by g, the grading is given by

P =sp(W)@o(V), §' =WV

What we actually get is a representation of the Lie superalgebra g.
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We consider the following special choice of W and V. We choose X to be an arbitrary finite dimensional
vector space over R equipped with a non-degenerate symmetric form (, )x, we use W and Vj to denote the

standard symplectic space and split orthogonal space, then we define
W=WRX, V=VWX
it’s easy to see that W and V are also symplectic and split orthogonal space if we equip W with ( , )x® <, >

and (, )x ®(, ) respectively. Note that o(X) naturally injects into sp(W) and o(V).

Theorem A.3.1. The centralizer of o(X) in § is also a Lie superalgebra, we denote it by T, then
I =sp(W)c@o(Vo)c < §°, I = (W Vo)c < §'

and moreover,

7~‘27”»(W,V)SO(V)+ — the subalgebra generated by T inside Tari(W,V)

Remark A.3.1. Here the second inclusion
I' = (We@W)c < g
1s realized as

(W®VWVo)c ~ Home(We, Voc) — Home(We ® Xc, Voc ® X¢) >~ Home(We, Ve) ~ (W® V)c
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