
CONSTRUCTION OF KM-CYCLES AND EXAMPLES

BAIQING ZHU

Contents

1. Introduction and Notations 1

2. Sum up of properties we want 2

2.1. Restriction rule 3

2.2. Product rule 4

2.3. Theta distribution 5

3. Computation of Fourier expansion 6

3.1. Simplification 6

3.2. Simplification of the fiber integral 8

3.3. Computation of the fiber integral in the case (1,2) 9

4. Construction 11

4.1. Construction from the known case 12

4.2. Construction by Howe operator 15

5. Uniqueness of Schwartz form 18

5.1. Uniqueness theorem 18

.0. Interaction with Weil representation 21

Appendix A. Spin-Oscillator representation 21

A.1. Oscialltor representation and inifinitesimal Fock model 21

A.2. Spin representation 24

A.3. Ortho-symplectic algebra 25

References 26

Date: November 2021.

i



CONSTRUCTION OF KM-CYCLES AND EXAMPLES 1

1. Introduction and Notations

Suppose F is a totally real number field of degree d, we denote its real embeddings by tτ1, τ2, ¨ ¨ ¨, τdu. V

is a finite dimensional vector space over R with a nondegenerate symmetric bilinear form p , q. We know

that

V bQ R »

d
à

i“1

V bF,τi R

and the bilinear form p , q decomposes into

p , q bQ R »

d
à

i“1

p , qτi

We assume p , qτi is postive definite for i ě 2, and has signature pp, 2q for p , qτ1 . We consider the following

Shimura datum: G “ ResF {QGSpinpV q, then

GR »

d
ź

i“1

GSpinpVτiq

for i ě 2, we define hi : S Ñ GSpinpVτiq to be the trivial map. Next we choose an orthogonal basis of Vτ1
and define

u : U1 ÝÑ SOpVτ1q

eiθ ÞÝÑ

¨

˚

˝

1p

cosp2θq sinp2θq

´sinp2θq cosp2θq

˛

‹

‚

then u will lift to the double cover SpinpVτ1q of SOpVτ1q, we denote it by ũ, then by the following exact

sequence,

1 Ñ Gm Ñ S Ñ U1 Ñ 1

we get a homomorphism h1 : S Ñ GSpinpVτ1q, put all hi together, we get

h : S

d
ś

i“1
hi

ÝÑ GR

we use X to denote the conjugacy class of h, then pG,Xq is a Shimura datum. The associated Hermitain

symmetric domain can be described as follows

DV “ tU Ă Vτ1 | U is an oriented negative definite 2-planeu

DV has two connected components, we will use D`
V to denote one of it. At a point z P D`

V , it corresponds

to a decomposition,

(1) V “ z ` zK

z is a negative 2-plane, and zK is a positive p-plane. By Cartan decomposition, we have

SOpVτ1q` “ expppq ¨K8

where K8 is the stabilizer of the decomposition (1), or equivalently, the stabilizer of z. p is the orthogonal

complement of k “ LiepKq w.r.t the Killing form on sopVτ1q, and we have a diffeomorphism,

D`
V » SOpVτ1q{K

exp
ÐÝ p

p can be viewed as the tangent space at z of D`
V . On the other hand, since D`

V is an open subset of the

Grassmannian, we can identify the tangent space at z to be,

(2) TzD
`
V » HomRpz, V {zq » z˚ b zK » z b zK

we use tz1, z2u to denote an oriented orthonormal basis of z, and tw1, w2, ¨ ¨ ¨, wpu to denote an oriented

orthonormal basis of zK, then by p2q, tvij “ wi b zjui,j make up a basis of TzD
`
V , and we use ωij to denote
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the coodinate function on p » TzD
`
V w.r.t this basis.

Our main goal is to construct a harmonic form on the Shimura variety ShKpG,Xq. Recall that for an

open compact subgroup K Ă GpAf q,

ShKpG,Xq “ GpQqzDV ˆGpAf q{K » GpQq`zD`
V ˆGpAf q{K

Our method is first constructing a harmonic 2n´form φ
pnq

V on the Hermitian symmetric domainD`
V satisfying

some good properties, then take “average” of it by theta distribution, i.e.

(3) Θpgq “
ÿ

XPV pF qn

ωpgqφ
pnq

V pXq ¨ φf pXq

here

(4) φ
pnq

V P SpV pF bQ Rqnq
â

Ω2npDV q

we can do the “average” operation because we have the Weil representation of GpAq on the Schwarzt space

SpV pAF qnq which is trivial on rational points GpQq, then (3) will turn out to be a harmonic form on the

Shimura variety. We can also include the Metaplectic action on (3), we denote G1 “ Mpp2n,Rq, this is not

an algebraic group, but we can still define G1pAF q “ Mpp2n,AF q, which is a double cover of Spp2n,AF q, we

use g1 to denote an element in G1pAF q, then

(5) Θpg1, gq “
ÿ

XPV pF qn

ωpg1, gqφpnqpXq ¨ φf pXq

This will also turn out to be a smooth form on the Shimura variety, which only depends on the following

double coset,

Spp2n,QqzG1pAF q{K 1

where K 1 stabilize φf P SpV pAF,f qq. In this note, we will study the construction and uniqueness property

of the element (4).

In section 2 and 3, we make a summary of all the properties we want for this element, and then study the

cohomological class of (5), we compute its Fourier expansion w.r.t. the metaplectic group.

In section 4, we explain two ways of construction. The first construction assumes the known results of

p “ 1, and gives an explicit formula (27) and (28). The second construction uses Howe operator and works

more generally. These two constructions coincides with each other.

In section 5, we prove the uniqueness of the element (4) satisfying all the properties listed in section

2. Then we prove that (4) will be an eigenform under the action of the maximal compact subgroup K 1 of

Mpp2n,Rq.

2. Sum up of properties we want

Note that we have the following isomorphism,

SppV pF bQ Rqnqq »

d
â

i“1

SpVτiq

SppV pF bQ Rqnqq
â

Ω2npDV q »
`

SpVτ1q
â

Ω2npDV q
˘

b

d
â

i“2

SpVτiq

these two isomorphisms are compatible with the GpRq ˆ G1pRq action. In the rest of this note, we will

mainly focus on the first term SpVτ1q
Â

Ω2npDV q. To simplify notation, we will still use V to denote a finite

dimensional vector space over R with a non-degenerate symmetric bilinear form of signature pp, 2q for some
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p ě 1. Our main goal is to find a system of forms tφ
pnq

V uV,n, such that

1. φ
pnq

V P SpV nq
Â

Ω2npDV q is closed.

2. tφ
pnq

V uV,n satisfy the restriction rule.

3. tφ
pnq

V uV,n satisfy the product rule.

In the rest of this section, we will explain the meanings of 1, 2, 3 in detail, especially 2 and 3.

Let’s explain the closedness condition, since the coefficients of φ
pnq

V lie in the Schwartz function space, the

d operator will commute with the summation in (5), then the closedness of φ
pnq

V implies the closedness of

Θpg1, gq as a smooth form on DV .

2.1. Restriction rule. It’s convenient to introduce the following category Q2

Object : Finite dimensional vector space over R with a non-degenerate symmetric bilinear form of signature pp, 2q for some p ě 1.

Morphism : Linear homomorphisms preserving the forms on target and source

By the non-degeneracy of the bilinear form, it’s easy to show the following

Lemma 2.1.1. Suppose V1 and V2 are objects in Q2, and ϕ P MorQ2
pV1, V2q, then ϕ must be injective.

A system of forms tφ
pnq

V uV,n can be viewed as a functor

F : Q2 ÝÑ Rings‚

V ÞÝÑ

˜

p
ź

n“0

SpV nq
â

Ω2npDV q, pφ
pnq

V q

¸

(6)

where we extend the definition that

n “ 0, SpV 0q
â

Ω0pDV q “ C8pDV q and φ
p0q

V “ 1

n ě p, SpV 0q
â

Ω0pDV q “ 0 and φ
pnq

V “ 0

Suppose V1, V2 P ObpQ2q, and ϕ P MorQ2
pV1, V2q then ϕ is necessarily injective, therefore we get a natural

map which is actually a closed immersion,

DV1

ϕ
ÝÑ DV2

this induces ϕ˚ : Ω2npDV2q Ñ Ω2npDV1q, we also have

SpV n
2 q

ϕ˚

ÝÑ SpV n
1 q

Definition 2.1.1. We say F (or tφ
pnq

V uV,n) satisfy the restriction rule if

(7) Fpϕq

´

pφ
pnq

V1
q

¯

“ pϕ˚ b ϕ˚qpφ
pnq

V1
q “

´

φ
pnq

V2
¨ φ`

pV K
2 qn

¯

Here φ0
pV K

2 qn
means the Gaussian function corresponding to the positive definite space V K

2 , and ϕ˚ b ϕ˚

means the pullback map on both the Schwartz function space and form space.

Let’s explain (7) further, here V K
2 means the orthogonal complement of V2 inside V1 under the linear map

ϕ. Every X P V n
1 has the following decompostion,

X “ ϕpX 1q ` Y

where X 1 P V n
2 , and Y P pV K

2 qn, then (7) means,

pϕ˚ b ϕ˚q

´

φ
pnq

V1
pXq

¯

“ φ
pnq

V2
pX 1q ¨ φ`

pV K
2 qn

pY q

when ϕ is an isomorphism, we have

(8) pϕ˚ b ϕ˚qφ
pnq

V1
“ φ

pnq

V2

This should be viewed as naturality or functoriality property of the Schwartz class we want. Especially,

when ϕ is an linear automorphism preserving the symmetric form on V , i.e. ϕ P SOpV q, then this implies
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Lemma 2.1.2. If F satisfies the restriction rule, then

φpnq P
`

SpV nq
â

Ω2npDV q
˘SOpV q

»
`

SpV nq
â

Ω2npD`
V q

˘SOpV q
`

Remark 2.1.1. This lemma enables us to construct a form locally at a point, to be more precisely, we have

the following isomorphism, for any z P D`
V , K8 is the stabilizer

`

SpV nq
â

Ω2npDV q
˘SOpV q

»
`

SpV nq
â

Ω2npD`
V q

˘SOpV q
`

»
`

SpV nq
â

^2np˚
˘K8

We will also refer to this as invariance property.

Next we study how restriction rule affects the harmonic form we get via (5). When U Ă V is an

F´subspace of dimension p1 and UpRqK Ă V pRq is positive definite. Then U ãÑ V gives us,

GU ãÑ GV

together with the closed embedding

(9) DU
i

ÝÑ D “ DV

we get a compatible system of closed immersion of Shimura varieties (when K Ă GV pAf q) is sufficiently

small)

(10) pMU qK1
i

ÝÑ pMV qK

here K 1 “ K XGU pAf q. We use superscript V in φV
f to indicate

φV
f P SpV pAf qq

by the isomorphism,

SpV pAf qq » SpUpAf qq
â

SpUKpAf qq

we assume

φV
f pX,Y q “ φU

f pXq ¨ φUK

f pY q

when g P GU pAf q, and n ď p1, (7) and the definition of the theta distribution (5) implies

i˚ΘV pg1, gq “
ÿ

XPV pF qn

i˚pωpg1, gqφ
pnq

V pXq ¨ φV
f pXqq

“
ÿ

Y PUKpF qn

ÿ

ZPUpF qn

ωpg1qi˚φ
pnq

V pY ` Zq ¨ φV
f pY ` g´1Zq

“
ÿ

Y PUKpF qn

ÿ

ZPUpF qn

ωpg1qpφ
pnq

U pZqφ0
pUKqnpY qq ¨ φU

f pg´1ZqφUK

f pY q

“

¨

˝

ÿ

ZPUpF qn

ωpg1qφ
pnq

U pZq ¨ φU
f pg´1Zq

˛

‚¨

¨

˝

ÿ

Y PUKpF qn

ωpg1qφ0
pUKqnpY q ¨ φUK

f pY q

˛

‚

“ ΘU pg1, gq ¨ θUK pg1q(11)

(11) is the analytic version of the pullback formula appeared in [5] (Proposition 3.1).

2.2. Product rule.

Definition 2.2.1. We say F (or tφ
pnq

V uV,n) satisfy the product rule if for any X “ pX1, ..., Xnq P V n, we

have

φpnqpXq “ φ
p1q

1 pX1q ^ φ
p1q

2 pX2q ^ ¨ ¨ ¨ ^ φp1q
n pXnq

Here the subscript of φ
p1q

i corresponds to the i´th component of the left hand side of the following map

SpV q b SpV q b ¨ ¨ ¨ b SpV q ÝÑ SpV nq
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Although every component looks like the same, but actually they are not the same! Recall the construction

of the Weil representation, we choose a standard symplectic space W of dimension 2n over F , suppose

e1, ¨ ¨ ¨, en, f1, ¨ ¨ ¨, fn is a standard basis, denote W 1 “ spanR te1, ¨ ¨ ¨, enu, the Weil representation is realized

on the following space,

SpV bW 1qq » SpV nq

Therefore the i´th component is actually SpV b eiq.

Let’s see how the product rule affects the Harmonic form we get via (5). We have the following isomor-

phism,

SpV pAF,f qnq »

n
â

i“1

SpV pAF,f qiq

here the subscript i means the i´th copy of V n. Now we pick φf P SpV pAF,f qnq satisfying,

φf pX1, X2, ¨ ¨ ¨, Xnq “ φf,1pX1qφf,2pX2q ¨ ¨ ¨ φf,npXnq

where φf,i P SpV pAF,f qiq. We also denote ιi to be the i´th embedding of metaplectic groups,

ιi :Mpp2,AF q ãÑ Mpp2n,AF q

Then by definition (5), we have

Θp

n
ź

i“1

ιpg1
iq, g, φf q “

ÿ

XPV pF qn

ωp

n
ź

i“1

ιpg1
iq, gqφpnqpXq ¨ φf pXq

“
ÿ

X1PV pF q

ÿ

X2PV pF q

¨ ¨ ¨
ÿ

XnPV pF q

ωpg1
1qφp1qpX1qφf,1pg´1X1q^

ωpg1
2qφp1qpX2qφf,2pg´1X2q ^ ¨ ¨ ¨ ^ ωpg1

nqφp1qpXnqφf,npg´1Xnq

“ Θpg1
1, g, φf,1q ^ Θpg1

2, g, φf,2q ^ ¨ ¨ ¨ ^ Θpg1
n, g, φf,nq(12)

here we add the extra variable φf to indicate the dependence of the Harmonic form Θ on the finite Schwartz

function space. For the rest of this note, we won’t seriously consider this dependence, so we will omit it.

(12) is not only true for the embedding of Mpp2,AF q in Mpp2n,AF q. It’s also true for any decomposition

of the symplectic space

W “ W1 `W2

where W1 and W2 are themselves symplectic and orthogonal to each other. Then we get

ιi : MppWi,AF q ãÑ MppW,AF q

and

(13) Θpι1pg1
1q ¨ ι2pg1

2q, g, φf,1 ¨ φf,2q “ Θpg1
1, g, φf,1q ^ Θpg1

2, g, φf,2q

(13) is the analytic version of the product formula appeared in [5] (Theorem 1.1).

2.3. Theta distribution. In this subsection we explain (5), we will prove the following proposition,

Proposition 2.3.1. when φf P SpV pAF,f qnqK , then Θpg1, gq is a harmonic 2n´form on the Shimura variety

ShKpG,Xq.

Proof: We will prove this result both globally and locally. We abbreviate DV as D.

˝Globally, φpnq P
`

SpV pF bQ Rqnq
Â

Ω2npDq
˘GpRq

»
`

SpV pF bQ Rqnq
Â

Ω2npD`q
˘GpRq

`
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In this case we require g P GpAf q. We can easily verify that for fixed g1 P G1pAF q, Θpg1, gq only depends

on the image of g in the following double coset decomposition,

GpQqzGpAf q{K “
ğ

j

GpQqgjK

Each Θpg1, gjq gives rise to a differntial form onD, which is invariant under the action of Γj “ GpQqXgjKg
´1
j ,

i.e. Θpg1, gjq P H2npΓjzD,Cq, and we know that

MK “
ğ

j

ΓjzD

This is an explanation of the meaning of Θpg1, gq P A2npMK ,Cq by explicitly given a global differential form.

It’s better to denote this form simply by Θpg1q, we will sometimes use this notation in the rest of this note.

˝Locally, φpnq P

´

SpV pF b Rqnq
Â Ź2n

pp˚q

¯K8

In this case g “ g8gf P GpAq. As we already stated in previous section, φn P pSpV pFbRqnq
Â Ź2n

pp˚qqK8

is the restriction of the global differenrial form on D to the point z P D corresponding to the maximal com-

pact group K8. Then Θpg1, gjq is the restriction of the global form we just explained to rg8z, gf s P MK .

3. Computation of Fourier expansion

3.1. Simplification. In this section we calculate the Fourier expansion of Θpg1q. By definition,

(14) Θpg1q “
ÿ

βPSymnpF q

ż

NpF qzNpAF q

Θp

˜

1 b

0 1

¸

g1qψF p´
1

2
trpβ ¨ bqqdb

We denote Θβpg1q “
ş

NpF qzNpAF q

Θp

˜

1 b

0 1

¸

g1qψF p´ 1
2 trpβ ¨ bqqdb. It’s easy to see that Θβpg1q also gives

rise to a differential form on MK . In (14) and the definition of Θβ , we can add the variable g P GpA8q

to indicate which component (sightly different with connected component!) are we in. Moreover, it can be

computed by explicit formula of Weil representation that,

Θβpg1, gq “
ÿ

XPV pF qn

pX,Xq“β

ωpg1, gqφpnqpXq ¨ φf pXq

Define ΩβpF q “ tX P V pF qn|pX,Xq “ βu, it is stable under the action of GpQq, we consider the

GpQq`´orbits of ΩβpF q,

ΩβpF q “
ğ

i

Oi “
ğ

i

GpQq`Xi

and define

ΘOi
pg1, gq “

ÿ

XPOi

ωpg1, gqφpnqpXq ¨ φf pXq

It’s easy to see that ΘOipg
1, gq is invariant on the second variable under the double coset decomposition

GpQq`zGpAf q{K, hence it is a closed 2n´form on

GpQq`zD` ˆGpAf q{K » GpQqzD ˆGpAf q{K “ MK

Therefore we have, as closed 2n´forms on MK ,

Θpg1q “
ÿ

βPSymnpF q

Θβpg1q “
ÿ

βPSymnpF q

ÿ

i

ΘOi
pg1q

Now we focus on the orbit Oi “ GpQq`Xi. Define Ui “ SpanF tXiu, the F -subspace of V spanned by the

component of Xi. There are two possibilities,
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(a). rank(β) = dimFUi, we call Oi a non-degenerate orbit.

(b). rank(β) ă dimFUi, we call Oi a degenerate orbit.

Suppose Oi is a non-degenerate orbit, we have a decomposition,

V “ Ui ` UK
i

The stabilizer of this decomposition is

Hi “ GUi ˆGUK
i

where GUi
(resp. GUK

i
) is the pointwise stabilizer of UK

i (resp. Ui). Then ΘOi
pg1q can be further decomposed

as,

ΘOi
pg1, gq “

ÿ

XPOi

ωpg1, gqφpnqpXq

“
ÿ

γPGXi
pQq`zGpQq`

ωpg1, gqφpnqpγ´1Xiq ¨ φf pγ´1Xiq

“
ÿ

ηPHpQq`zGpQq`

ÿ

γPGXi
pQq`zHpQq`

ωpg1, ηgqφpnqpγ´1Xiq ¨ φf pγ´1Xiq

“
ÿ

ηPHpQq`zGpQq`

ÿ

XPUn
i XOi

ωpg1, ηgqφpnqpXq ¨ φf pXq

We define

ΘUi
pg1, gq “

ÿ

XPUn
i XOi

ωpg1, gqφpnqpXq

It’s easy to see that ΘUi
pg1, gq is invariant on the second variable under the double coset decomposition

HpQq`zGpAf q{K, hence it is a closed 2n´form on

EHi

K :“ HipQq`zD` ˆGpAf q{K

and

ΘOi
pg1, gq “

ÿ

ηPHpQq`zGpQq`

ΘUi
pg1, ηgq

Now we assume further that Ui is positive definite everywhere, i.e. β “ pXi, Xiq is positive semi-definite

everywhere and rankβ = dimFUi. Then there is a closed immersion,

DUK
i

i
ÝÑ D

hence,

MHi

K :“ HipQq`zD`

UK
i

ˆGpAf q{K
i

ÝÑ GpQq`zD` ˆGpAf q{K “ MK

We have the following diagram,

EHi

K

pr

�� !!
MHi

K i
// MK

Where pr is induced by pr : D` Ñ D`

UK
i
, and the fiber of this map can be described explicitly as

pr´1pzq “ toriented, negative 2 ´ planes contained in z ` U bτ1 Ru XD`

By our notation, pr´1pzq “ D`
z`U1

(we abbreviate U1 as Ubτ1R), it’s also easy to show that pr : EHi

K Ñ MHi

K

also has fiber isomorphic to D`
z`U1

over the point rz, gs P MHi

K .

One of the most important theorem in [2] (Theorem 3.1) is the following,

Theorem 3.1.1. Suppose O “ GpQq`X is a non-degenerate and positive definite orbit of rank t, and φpnq

satisfies closedness property and invariance property, then
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(i) ΘUi
pg1q is integrable along the fibers of pr : EHi

K Ñ MHi

K , so the fiber integral ppr˚qΘUi
pg1q is a well-

defined closed 2n´ 2t form on MHi

K . Especially, when t “ n, this fiber integral is a number.

(ii) Moreover, as cohomology classes on MK ,

rΘOi
pg1qs “ i˚rpprq˚ΘUi

pg1qs

Remark 3.1.1. When t “ n, the fiber of pr is a complex manifold of dimension n, the fiber integral

ppr˚qΘUi
pg1q is 0 if ΘUi

pg1q is not type pn, nq. So we will only focus on φpnq of type pn, nq, i.e.,

φpnq P pSpV pF b Rqnq
â

Ωn,npDqqGpRq » pSpV pF b Rqnq
â

Λn,npp˚qqK8

Remark 3.1.2. U Anisotropic???

3.2. Simplification of the fiber integral. We have reduced the problem of computing the Fourier ex-

pansion of Θpg1q to computing the fiber integral ppr˚qΘU pg1q, at least for those positive definite orbit.

In this section we compute explicitly this fiber integral for positive definite orbit of full rank, we assume

O “ GpQq`X is a positive definite orbit of rank n, and U “ SpanF tXu, U1 “ U bτ1 R, β “ pX,Xq. By

definition, for z P DUK , g P GpAf q,

pr˚rΘU pg1qsprz, gsq “ pr˚r
ÿ

Y PUnXO
ωpg1qφpnqpY q ¨ φf,Y sprz, gsq

“

ż

pr´1prz,gsq

ÿ

Y PUnXO
ωpg1qφpnqpY q ¨ φf,Y

“
ÿ

Y PUnXO

ż

Dz`U1

ωpg1qφpnqpY q ¨ φf,Y pgq

Let’s explain these equalities by the following diagram,

EH
K “ HpQq`zD` ˆGpAf q{K

pr

��

Ů

i

ΓizD
`

pr

��
MH

K “ HpQq`zD`

UK ˆGpAf q{K
Ů

i

ΓizD
`

UK

where the disjoint union ranges over the double coset decomposition,

GpAf q “
ğ

i

HpQq`giK

ΘU pg1q is a pn, nq´form on EH
K , ΘU pg1, gq is this form on the component corresponding to g P HpQq`zGpAf q{K,

it becomes the g´component of the p0, 0q´form, i.e. a function, pr˚ΘU pg1q after doing fiber integral.

Let’s now deal with the fiber integral,

(15) κφpnq pg1, Y q :“

ż

D`
z`U1

ωpg1qφpnqpY q

We can only consider the case g1 P G1pRq “ Mpp2n,RqˆMpp2n,Rqˆ¨¨ ¨ˆMpp2n,Rq(d copies corresponding

to every real place of F ), because the finite adele part of g1 only acts on φf , hence doesn’t affect the fiber

integral. We know that,

φpnqpY q “ φ
pnq

Vτ1
pYτ1q ¨

ź

iě2

φ0
Vτi

pYτiq

here φ0
Vτi

is the Gaussian function of the positive definite space Vτi ,

φ0
Vτi

pYτiq “ expp´πpYτi , Yτiqτiq “ expp´π ¨ trβiq
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In (15), we are actually integrating the restriction of ωpg1qφpnqpY q to Dz`U1
, then by the Restriction rule,

since Yτ1 P z ` U1

i˚pωVτ1
pg1qφ

pnq

Vτ1
pYτ1qq “ ωz`U1

pg1qφ
pnq

z`U1
pYτ1q

By Product rule, suppose Yτ1 “ pYτ1,1, Yτ1,2, ¨ ¨ ¨, Yτ1,nq, Yτ1,i P U1,

φ
pnq

z`U1
pYτ1q “ φ

p1q

z`Yτ1,1
pYτ1,1q ^ φ

p1q

z`Yτ1,2
pYτ1,2q ^ ¨ ¨ ¨φ

p1q

z`Yτ1,n
pYτ1,nq

r2s (Proposition 6.1) proves that, (growth control!! I guess it’s true for K8´finite vectors)
ż

D`
z`U1

φ
pnq

z`U1
pYτ1q “

n
ź

i“1

ż

D`
z`Yτ1,i

φ
p1q

z`Yτ1,i
pYτ1,iq

Restriction rule and Product rule helps us reduce the computation of of type pn, pq (pn, nq´form on dimension

p complex manifold) integral into the computation of the type pn, nq and then to type p1, 1q. To make a

small summary, we get

(16) κφpnq p1, Y q “ expp´π
ÿ

jě2

trβjq ¨

n
ź

i“1

ż

D`
z`Yτ1,i

φ
p1q

z`Yτ1,i
pYτ1,iq

Remark 3.2.1. (16) holds only when we have the Product rule. However, the product rule is not known to

ωpg1qφpnqpY q. That’s why the left hand side is g1 “ 1.

Remark 3.2.2. Although we don’t have a nice decomposition of (16) type, it’s simply by definition that,

κφpnq pg1, Y q “ κωpg1qφpnq p1, Y q

Our hope is that φpnq behaves well under Weil representation, so we can relate φpnq and ωpg1qφpnq by some

simple formula, hence for their fiber integral.

Actually this hope is already true for parabolic subgroup of G1pRq. Since G1pRq is generated by the parabolic

subgroup and

w “ p

˜

0 In

´In 0

¸

, 1q

whose action on Schwartz function is Fourier transformation. Therefore we expect the Schwartz function

coefficients of φpnq to be Hermite polynomials which are invariant under the Fourier transformation.

3.3. Computation of the fiber integral in the case (1,2). In this subsection we explained the compu-

tation of the fiber integral
ż

D`
z`X

φ
p1q

z`XpXq

z ` X is real vector space with a non-degenerate quadratic form p , q of signature p1, 2q, X is a positive

vector. By definition,

D`
z`X “ toriented, negative 2 ´ planes contained in z `Xu XD`

In this case, it’s better to describe D`
z`X in the following way,

D`
z`X “ a connected component of toriented, positive 1 ´ lines contained in z `Xu

We choose a basis for z `X as follows,

x “ pX,Xq´ 1
2X, z1 P z, z2 P z

s.t., v “ x0x` x1z1 ` x2z2 has norm

pv, vq “ x20 ´ x21 ´ x22

then we have a clearer description of D`
z`X ,

D`
z`X » tpx0, x1, x2q |x20 ´ x21 ´ x22 “ 1, x0 ą 0u
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this is the hyperboloid model H2
1, we can also identify the tangent space at z1 P D`

z`X as,

Tz1D`
z`X » z1K

the canonical metric on this tangent space is ´p , q. pH2
1,´p , qq is isometric to upper half plane (H1, y

´2pdx2`

dy2q). Next we will try to compute the fiber integral of a form in the following space,

φp1q P pSpz `Xq
â

Ω1,1pDz`XqqSOp1,2q » pSpz `Xq
â

Ω1,1pD`
z`XqqSOp1,2q

`

(17)

» pSpz `Xq
â

1,1
ľ

pp˚qqSOp2q(18)

here the second isomorphism is restricting the global form to a point z1 P D`
z`X , p » Tz1D`

z`X is a Lie

subalgebra of sop1, 2q, and exponential map gives a differeomorphism between p and D`
z`X . With the basis

we have already chosen, sop1, 2q can be identified as,

sop1, 2q “ t

¨

˚

˝

0 x1 x2

x1 0 z

x2 ´z 0

˛

‹

‚

|x2, x2, z P Ru

we choose the base point z1 “ z “ p1, 0, 0q, then p can be identified as

p “ t

¨

˚

˝

0 x1 x2

x1 0 0

x2 0 0

˛

‹

‚

|x1, x2 P Ru

and the isomorphism p » Tz1D`
z`X is,

¨

˚

˝

0 1 0

1 0 0

0 0 0

˛

‹

‚

ÞÝÑ p0, 1, 0q

¨

˚

˝

0 0 1

0 0 0

1 0 0

˛

‹

‚

ÞÝÑ p0, 0, 1q

hence we can identify p˚ “ SpanRtx1, x2u, then a general element in the space (18) is of the following form,

φp1q
z px0x` x1z1 ` x2z2q “ fpx20q ¨ gpx21 ` x22q ¨ expp´πpx20 ` x21 ` x22qq ¨ dx1 ^ dx2

where f and g are one variable polynomials. Since Dz`X has complex dimension 1, this form is automatically

closed. Particularly, if we evaluate this at X, we get,

φp1q
z pXq “ fppX,Xqq ¨ expp´πpX,Xqq ¨ dx1 ^ dx2 “ pφp1qpXqqz

For other points in Dz`X , we have the following

Lemma 3.3.1. For z1 P D`
z`X a positive vector with norm 1, suppose gz “ z1 for g P SOp1, 2q`, then we

have,

pφp1qpXqqz1 “ fppX, z1qq ¨ gppX, z1q ´ pX,Xqq ¨ expp´πpX,Xqz1 q ¨ pg˚q´1pdx1 ^ dx2q

here pX,Xqz1 “ 2pX, z1q ´ pX,Xq and pg˚q´1pdx1 ^ dx2q is the volume form of D`
z`X at z1.

Consider the following coordinate change,

p0,`8q ˆ S1 e
ÝÑ D`

z`X

pr, θq ÞÝÑ pchprq, shprqcospθq, shprqsinpθqq

this is actually p0,`8q ˆ S1 ÝÑ p
exp
ÝÑ D`

z`X . Under this coordinate change, it’s easy to verify that

pe˚pφp1qqpXqqpr,θq “ fppX,Xqchprq2q ¨ gppX,Xqshprq2q ¨ e´2πpX,Xqchprq
2

`πpX,Xqshprqdrdθ

then

κφp1q p1, Xq “ 2πeπpX,Xq

`8
ż

0

fppX,Xqchprq2q ¨ gppX,Xqshprq2q ¨ e´2πpX,Xqchprq
2

shprqdr
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take the change of variable u ÞÑ chprq, we get,

κφp1q p1, Xq “ 2πeπpX,Xq

`8
ż

1

fppX,Xqu2q ¨ gppX,Xqpu2 ´ 1qq ¨ e´2πpX,Xqu2

du

these calculations suggest that the following function is important for our computation,

(19) hptq “

`8
ż

1

fpt2u2q ¨ gpt2pu2 ´ 1qq ¨ e´2πt2u2

du

we have shown that κφp1q p1, Xq “ 2πeπpX,XqhppX,Xq
1
2 q only depends on pX,Xq. Then (16) becomes,

κφpnq p1, Y q “ e
´π

ř

jě2
trβj

¨

n
ź

i“1

2πeπpYτ1,i,Yτ1,iqhppYτ1,i, Yτ1,iq
1
2 q

“ p2πqne
´π

ř

j
trβj

¨

n
ź

i“1

e2πβ1,iihppβ1,iiq
1
2 q

It’s natural to hope that the function hptqe2πt
2

in the product of RHS is a constant, i.e., hptq is a (constant

multiple of) Gaussian, if this is true, suppose hptq “ 1
2π e

´2πt2 (the constant is chose to be 1
2π to eliminate

p2πqn), then the Mellin transform of h is

(20)

`8
ż

0

ts´1hptqdt “
1

2π

Γp s
2 q

2p2πq
s
2

On the other hand, if we compute the Mellin transform directly form (19), we get

`8
ż

0

ts´1hptqdt “

`8
ż

1

`8
ż

0

vs´1u´sfpv2qgpv2p1 ´ u´2qqe´2πv2

dudv

For simplicity, we assume g is constant function 1, then this becomes,

`8
ż

0

ts´1hptqdt “

`8
ż

1

`8
ż

0

vs´1u´sfpv2qe´2πv2

dudv “
1

s´ 1

`8
ż

0

vs´1fpv2qe´2πv2

dv

Since f is a polynomial, it’s easy to compute the following “single” integration,

(21)

`8
ż

0

vs´1v2ne´2πv2

dv “
Γp s

2 ` nq

2p2πq
s
2 `n

we take linear combinations of (21) to eliminate s´1 and try to get the RHS of (20), then a simple calculation

shows that the following function is the one we need,

fpT q “ 2T ´
1

2π

and hptq “ 1
2π e

´2πt2 by this choice. Moreover, (16) becomes

(22) κφpnq p1, Y q “ expp´π
ÿ

j

trβjq

[need to be added, general formula for g1]

4. Construction

Suppose V is real quadratic space with signature pn, 2q, In this section, we will give the construction of

a reasonable Schwartz class satisfying condition 1,2,3,4. Calculation from the last section tells us that, a
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reasonable Schwartz class in the case of signature p1, 2q should take the following form,

pφp1qpXqqz “ p2pX, zq ´
1

2π
q ¨ expp´πpX,Xqzq ¨ dVz(23)

“ ppX,Xq ` pX,Xqz ´
1

2π
qexpp´πpX,Xqzq ¨ dVz(24)

where dV is the volume form of D`. We will give two constructions, the first one is based on this known

case p1, 2q, and uses GpRq (or K8) invariant property, closeness property, the Restriction rule. The second

one is the construction appeared in [1] using Howe operator. We will see finally that these two constructions

coincide.

4.1. Construction from the known case. We don’t have a very explicit description of the hermitian

symmetric domain D`
V when p ą 1, but a large part of the analysis of the case p “ 1 can still be done.

As in the introduction, we fix a z P D`
V , and an oriented orthogonal normal basis tz1, z2u of z, which

is unique up to SOp2q action. Then zK is a p´dimensional, positive definite subspace of V . We also fix

an oriented orthogonal normal basis tw1, w2, ¨ ¨ ¨, wpu, which is unique up to SOppq action. We have the

following identification,

(25) p » TzD
`
V » HomRpz, V {zq » z˚ b zK » z b zK

here p “ sopp, 2q{psoppq ‘ sop2qq, with the basis we have chosen, it can be identified with the following

matrices,

p “ t

˜

0p A

At 02

¸

|A P Mpˆ2pRqu

the isomorphism (25) can be made explicitly as follows,

z b zK »
ÝÑ p

wi b zj ÞÝÑ

˜

0n Eij

Et
ij 02

¸

We use ωij to denote the coordinate function of p w.r.t the basis twi b zj “: viju, then ωij make up a basis

of p˚ over R. We also use x1, x2 to denote the coordinate function of z w.r.t the basis tz1, z2u, and yi to

denote the coordinate function of zK w.r.r the basis twiu.

Lemma 4.1.1. The almost complex structure on TzD
`
V is given by

Ad

¨

˚

˝

¨

˚

˝

Ip
˜

0 ´1

1 0

¸

˛

‹

‚

˛

‹

‚

Lemma 4.1.2. The canonical Riemannian metric on TzD
`
V can be identified with the negative of the metric

on z b zK induced by p , q of V . The Chern class of the canonical line bundle on D`
V is

Ω “

p
ÿ

i“1

ωi1 ^ ωi2

The Schwartz form we are finding is of the following form,

φ
p1q

V pXq “

p
ÿ

i“1

fipXqφ`
V pXqωi1 ^ ωi2 `

ÿ

i‰j

gijpXqφ`
V pXqωi1 ^ ωj2(26)

`
ÿ

i‰j

hijpXqφ`
V pXqωi1 ^ ωj1 `

ÿ

i‰j

kijpXqφ`
V pXqωi2 ^ ωj2(26’)

here φ`
V pXq is the Gaussian function on V w.r.t the quadratic form p , qz. Our main result in the section is

the following,
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Theorem 4.1.1. Based on the case p = 1, and by K8´invariance property and Restriction rule, we can

obtain (up to a nonzero constant)

fipXq “ y2i ´
1

4π

gijpXq “ yiyj

p261q “ 0

Moreover, with these choices, φ
p1q

V pXq is closed.

This theorem tells us that the general case is determined by the case p “ 1, and at point z P D`
V , it takes

the following form,

φ
p1q

V pXq “

˜

p
ÿ

i“1

py2i ´
1

4π
qωi1 ^ ωi2 `

ÿ

i‰j

yiyjωi1 ^ ωj2

¸

¨ e´πpX,Xqz(27)

“

˜˜

p
ÿ

i“1

yiωi1

¸

^

˜

p
ÿ

i“1

yiωi2

¸

´
1

4π
Ω

¸

¨ e´πpX,Xqz(28)

Proof: First we consider the subspace Vi “ z ` Rwi, this is of signature p1, 2q, we have

(29) D`
Vi

j
ãÑ D`

V

then by Restriction rule,

py2i ´
1

4π
q ¨ φ`

V pXq “ j˚φ
p1q

V pXqpvi1, vi2q

“ fipXqφ`
V pXq

then we get the result for fi, but we can choose another base of zK by applying an element in SOppq, suppose

we have

pw1
1, w

1
2, ¨ ¨ ¨, w1

pq “ pw1, w2, ¨ ¨ ¨, wpq ¨A

then for coordinate functions, we also have

py1
1, y

1
2, ¨ ¨ ¨, y1

pq “ py1, y2, ¨ ¨ ¨, ypq ¨A

Now consider (29) for V 1
i “ z ` Rw1

i, by restriction rule, we get
˜

p

p
ÿ

j“1

ajiyjq2 ´
1

4π

¸

¨ φ`
V pXq “ j˚φ

p1q

V pXqpv1
i1, v

1
i2q

“ φ
p1q

V pXqp

p
ÿ

j“1

ajivj1,
p

ÿ

k“1

akivk2q

“
ÿ

j,k

ajiakiφ
p1q

V pXqpvj1, vk2q

“

˜

p
ÿ

l“1

a2lipy
2
l ´

1

4π
q `

ÿ

j‰k

ajiakigjkpXq

¸

¨ φ`
V pXq

then it’s trivial to see that we must have the expression for gij . Actually, this computation is equivalent to

saying that φ
p1q

V is SOppq-invariant. Now let’s check

φpXq “

˜

p
ÿ

i“1

py2i ´
1

4π
qωi1 ^ ωi2 `

ÿ

i‰j

yiyjωi1 ^ ωj2

¸

¨ e´πpX,Xqz

is SOp2q´invariant. Consider the following action of SOp2q on z,

z1
1 “ cospαqz1 ` sinpαqz2

z1
1 “ ´sinpαqz1 ` cospαqz2
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then it’s easy to see that,

w1
i1 “ cospαqwi1 ` sinpαqwi2

w1
i2 “ ´sinpαqwi1 ` cospαqwi2

and

ω1
i1 ^ ω1

j2 “ cospαq2ωi1 ^ ωj2 ´ sinpαq2ωi2 ^ ωj1 ` sinpαqcospαqωi2 ^ ωj2 ´ sinpαqcospαqωi1 ^ ωj1

under this action, φpXq becomes,

φpXq1 “

˜

p
ÿ

i“1

py2i ´
1

4π
qω1

i1 ^ ω1
i2 `

ÿ

i‰j

yiyjω
1
i1 ^ ω1

j2

¸

¨ e´πpX,Xqz

“

˜

p
ÿ

i“1

py2i ´
1

4π
qωi1 ^ ωi2 `

ÿ

i‰j

yiyjcospαq2ωi1 ^ ωj2 ´ sinpαq2ωi2 ^ ωj1

¸

¨ e´πpX,Xqz

`

˜

ÿ

i‰j

sinpαqcospαqωi2 ^ ωj2 ´ sinpαqcospαqωi1 ^ ωj1

¸

¨ e´πpX,Xqz

“

˜

p
ÿ

i“1

py2i ´
1

4π
qωi1 ^ ωi2 `

ÿ

i‰j

yiyjωi1 ^ ωj2

¸

¨ e´πpX,Xqz ` 0 “ φpXq(30)

Since φ
p1q

V pXq “ φpXq+(26’) is K8 “ SOppq ˆ SOp2q´invariant, and φpXq is already K8´invariant, (26’)

must be K8´invariant. Under the same SOp2q´action,

p261q “

˜

ÿ

i‰j

hijpX 1qω1
i1 ^ ω1

j1 ` kijpX 1qω1
i2 ^ ω1

j2

¸

φ`
V pXq

“

˜

ÿ

i‰j

hijpX 1qcospαq2ωi1 ^ ωj1 ` hijpX 1qsinpαq2ωi2 ^ ωj2

¸

φ`
V pXq

`

˜

ÿ

i‰j

phijpX 1q ´ hjipX
1qqsinpαqcospαqωi1 ^ ωj2

¸

φ`
V pXq

`

˜

ÿ

i‰j

kijpX 1qcospαq2ωi2 ^ ωj2 ` kijpX 1qsinpαq2ωi1 ^ ωj1

¸

φ`
V pXq

´

˜

ÿ

i‰j

pkijpX 1q ´ kjipX
1qqsinpαqcospαqωi1 ^ ωj2

¸

φ`
V pXq(31)

since (26’) only involves ωi1 ^ ωj1 and ωi2 ^ ωj2, we get

hij “ hji

kij “ kji

this symmetry condition implies that the summation in (26’) is 0. Then we get all the identifications in the

theorem. Next we show φ
p1q

V pXq “ φpXq is closed.

(32) d “
ÿ

i,j

ωpvijq b ωij^

where ωij^ is left multiplication by ωij on the exterior part, ωpvijq is the infinitesimal Weil representation

on the Schwartz function space,

pωpvijqfqpXq “ dfpXq ¨

˜

0p Eij

Et
ij 02

¸

¨X
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Now we use formula (28), and

d

˜

p
ÿ

i“1

yiωi1

¸

“
ÿ

i,j

xjωij ^ ωj1

d

˜

p
ÿ

i“1

yiωi2

¸

“
ÿ

i,j

xjωij ^ ωj2

then

dφ
p1q

V pXq “ d

˜˜

p
ÿ

i“1

yiωi1

¸

^

˜

p
ÿ

i“1

yiωi2

¸

´
1

4π
Ω

¸

¨ e´πpX,Xqz

`

˜˜

p
ÿ

i“1

yiωi1

¸

^

˜

p
ÿ

i“1

yiωi2

¸

´
1

4π
Ω

¸

^ dpe´πpX,Xqz q

“

˜˜

ÿ

i,j

xjωij ^ ωj1

¸

^

˜

p
ÿ

i“1

yiωi2

¸¸

¨ e´πpX,Xqz

`

˜˜

p
ÿ

i“1

yiωi1

¸

^

˜

ÿ

i,j

xjωij ^ ωj2

¸¸

¨ e´πpX,Xqz

`

˜˜

p
ÿ

i“1

yiωi1

¸

^

˜

p
ÿ

i“1

yiωi2

¸

´
1

4π
Ω

¸

^

˜

ÿ

i,j

´4πxjyi ¨ ωij

¸

e´πpX,Xqz

it can be shown that
˜˜

p
ÿ

i“1

yiωi1

¸

^

˜

p
ÿ

i“1

yiωi2

¸¸

^

˜

ÿ

i,j

´4πxjyi ¨ ωij

¸

“ 0

and
˜

ÿ

i,j

xjωij ^ ωj1

¸

^

˜

p
ÿ

i“1

yiωi2

¸

`

˜

p
ÿ

i“1

yiωi1

¸

^

˜

ÿ

i,j

xjωij ^ ωj2

¸

“ ´
ÿ

i,j

xjyi ¨ Ω ^ ωij

4.2. Construction by Howe operator. In this section, we follow r1s closely to give another construction

of the Schwartz class. In r1s, Kudla and Millson use the Howe operator defined as follows,

▽ “

˜

p
ÿ

i“1

ˆ

B

Byi
´ 2πyi

˙

b ωi1^

¸

¨

˜

p
ÿ

i“1

ˆ

B

Byi
´ 2πyi

˙

b ωi2^

¸

(33)

this operator acts on SpzKq, and we can find that,

φ
p1q

V “ φz ¨ ▽φzK

where φz (resp. φzK) is the Gaussian function on z (resp. zK). Our main goal in this section is to understand

the construction of this operator in a much more general setting.

Our initial goal is to find a K8´invariant class in the following space

SpV q
â

^2p˚

where V is of signature pp, 2q. Now we work more generally on V of signature pp, qq, and fix a decomposition

V “ V` ` V´, where V` (resp. V´) is positive definite (negative definite). We want to find the K8 »

SOpV`q ˆ SOpV´q-invariant inside the following space

SpV nq
â

^nqp˚

or more generally, in the following algebra

SpV nq
â

^‚p˚
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here p is the tangent space at z “ V` of the associated symmetric space DV ,

p » HomRpV´, V {V´q » V ˚
´ b V` » V´ b V`

˝ Step 1. We consider the Gaussian function φ0
V n

´
(resp. φ0

V n
`
) associated to V n

´ (resp. V n
´ ). We have the

following injective map

i : SympV ˚n
q

â

^‚p˚ ãÑ SpV nq
â

^‚p˚

f b v ÞÑ f ¨ φ0
V n

´
φ0
V n

`
b v

Since φ0
V n

´
φ0
V n

`
is K8´invariant, by multiplying it, we transfer the question of finding the invariant on the

right hand side to finding invariant on the left hand side.

˝ Step 2. We consider the problem of finding the SOpV`q´invariant first, since SOpV`q “ K` acts

trivially on V´, we focus on the following space,

(34) SympV ˚
`

n
q

â

^‚p˚ » SympV n
` q

â

^‚p˚

Note that we get a trivial K`´invariant element here, namely, 1 b 1. The idea is instead of finding an

invariant element directly, we try to find invariant operator ▽ on this space, then applying the operator on

1 b 1, what we get is also K`´invariant element.

˝ Step 3. Now we use Theorem A.3.1, it gives us a system of K`´invariant operators on the space (34).

In the language of Appendix A.3, we make the following choice,

X “ V`, V0 “ V ˚
´ ` V´

W still denote a symplectic space of dimension 2n, we use (51) as a standard basis. The symmetric form on

V0 is given as follows, recall that we choose tz1, z2u as a basis of V´, and tx1, x2u as a basis of V´, xi is the

coordinate function of zi. Then,

pzi, zjq “ pxi, xjq “ 0, pzi, xjq “ δij

this choice of symmetric form makes V0 into a split orthogonal space of dimension 4 over R. We also set

V ˚
´ “ pV0q1, V´ “ pV0q2, under this choice,

W1 “ W1 bR V` » V n
` , V1 “ pV0q1 bR V` » V ˚

´ b V` » p

and the algebra (55) becomes

SympV ˚
`

n
q

â

^‚p˚

which is exactly (34). This algebra admits an action by the following Lie superalgebra

g̃ “ g̃0 ` g̃1

g̃0 “ sppWqC ‘ opVqC, g̃
1 “ pW b VqC

and the centralizer of opV`q inside g̃ is given by

Γ “ Γ0 ` Γ1

Γ0 “ sppW qC ‘ opV0qC, Γ
1 “ pW b V0qC

Γ also generates the SOpV`q´invariant operators in T̃2πipW,Vq Ă EndCpSympV ˚
`

n
q

Â

^‚p˚q.

The action of Γ is given by,

sppW qC ‘ opV0qC ãÑ sppWq ‘ opVq
σ2πi‘σ2πi

ÝÑ EndCpSympV ˚
`

n
q

â

^‚p˚q(35)

pWC b V0qC ãÑ pW b VqC
σ2πi
ÝÑ EndCpSympV ˚

`

n
q

â

^‚p˚q(36)
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We focus on the action of (36), more precisely,

pW b V0qC “ pWC b pV ˚
´ qCq ‘ pWC b pV´qCq(37)

pW b VqC “ pWC b pV1qCq ‘ pWC b pV2qCq(38)

Every element in the second summand of (37) and (38) raises the degree in the wedge part by 1, by the

formula (54), and

WC b pV´qC “ pW1 b pV´qCq b pW2 ‘ pV´qCq

and the action of W1bpV´qC is 0 by the construction of oscillator representation. Therefore the only interest-

ing part of (37) is W2bpV´qC , it has complex dimension nq, therefore raise the “obvious” SOpV`q´invariant

element 1 b 1 to the degree nq in the wedge part, which is exactly what we want.

W2 b pV´qC has the following basis,

w2i b zj , 1 ď i ď n, 1 ď j ď q(39)

it is mapped to the following element in pW b VqC

p
ÿ

k“1

pw2i b wkq b pzj b wkq “

p
ÿ

k“1

pw2i b wkq b vkj

this element acts on the Schrödinger model SpV n
` q

Â

^‚p˚ by

p
ÿ

k“1

p
B

Byki
´ 2πykiq b ωkj^

here k indicates the k´th copy of V n
` . Then we define the Howe operator of type pp, qq to be

▽n
p,q “

n
ź

i“1

q
ź

j“1

p
ÿ

k“1

p
B

Byki
´ 2πykiq b ωkj^(40)

This operator corresponds to the action of the one-dimensional space

^nqpW2 b pV´qCq(41)

especially when q “ 2, n “ 1, (40) agrees with (33).

Finally, at the point z “ V´ P D`
V , the Schwartz form we want can be expressed by

φ̃
pnq

V “ φ0
V´

¨ ▽n
p,qφ

0
V`

(42)

We already know that this is a nq´form, and invariant under the action of SOpV`q. Now we consider the

action of SOpV´q,

Proposition 4.2.1. φ
pnq

V is invaraint under the action of SOpV´q. Therefore,

φ̃
pnq

V P pSpV nq
â

^nqp˚qK8

Proof: φ0
V´

is obviously invariant under the action of SOpV´q, so φ
pnq

V is SOpV´q-invariant is equivalent

to ▽n
p,qφ

0
V`

is SOpV´q-invariant, we prove this by arguing that ▽n
p,q is SOpV´q-invariant. But SOpV´q acts

on W2 b pV´qC by changing an oriented basis of V´, hence leaves (41) invariant, hence leaves the operator

▽n
p,q invariant.

Lemma 4.2.1. When q “ 2,n “ 1, the Schwartz form (42) constructed via Howe operator equals the form

constructed in Theorem 4.1 up to a nonzero constant, i.e.

φ̃
p1q

V “ φ0
V´

¨ ▽1
p,2φ

0
V`

“ 16π2φ
p1q

V
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5. Uniqueness of Schwartz form

5.1. Uniqueness theorem. Continue with previous notations, we assume V is a finite dimensional vector

space over R, equipped with a non-degenerate bilinear symmetric form of signature pp, 2q, p ě 1. For every

such V , we consider the following space

SpV nq
â

Ω2npD`
V q

Our main goal is to find a system of elements in this space satisfying 1, 2, 3, 4 in section 2, because then

this element will give rise to a Harmonic form on the Shimura varieties via theta distribution (5) by 1, 2,

compatible with the natural closed immersion (11) by 3, and wedge product (13) by 4.

In section 2, we consider the case p “ 1 and n “ 1, and find that in this case if we choose the form to be

φp1q “ py2 ´
1

4π
qω1 ^ ω2

Then the fiber integral (19) is easy to compute and we get a clean result (22).

In section 3.1, we construct the Schwartz form for general p and n “ 1, we first use restriction rule

and the known case p “ 1 to determine some coefficients of the form, and then use GpRq´invariance (i.e.

K8´invariance) to determine the others. Then in section 3.2, we construct the Schwartz form by Howe

operator, and the result coincides with 3.1

It’s a natural question to ask whether there exists other systems of forms satisfying 1, 2, 3, 4. We will

prove in this section that there are essentially no other forms satisfying all these four conditions. Firstly,

The product rule tells us that we only need to find a form satisfying 1, 2, 3 in the case n “ 1. We consider

the following dense subspace of Schwartz functions,

SpV q “ tP pXq ¨ φ`
V pXq | P is a polynomial function on V u Ă SpV q

Theorem 5.1.1. There is a unique (up to a nonzero scalar) system of elements tφ
pnq

V uV,n

φ
pnq

V P SpV nq b Ω2npD`
V q

s.t. 1,2,3 holds for these elements.

Or equivalently, There is a unique (up to a nonzero scalar) system of elements tφ
p1q

V uV

φ
p1q

V P SpV q b Ω2pD`
V q

s.t. 1,2 holds for these elements.

Proof: We prove the second statement. As before, we fix a z P D`
V , an oriented orthogonal normal basis

tz1, z2u of z and coordinate function tx1, x2u, and an oriented orthogonal normal basis tw1, w2, ¨ ¨ ¨, wpu of

zK and coordinate function ty1, y2, ¨ ¨ ¨, ypu, using the isomorphism,

pSpV q
â

Ω2pD`
V qqGpRq

`

» pSpV q
â

^2p˚qK8

From now on we work in the space on the right hand side (as we did before). We use ωij to denote the

coordinate function of p w.r.t the basis twi bzj “: viju, then ωij make up a basis of p˚ over R. The Schwartz
form we are looking for is of the following form,

φ
p1q

V pXq “

p
ÿ

i“1

fipXqφ`
V pXqωi1 ^ ωi2 `

ÿ

i‰j

gijpXqφ`
V pXqωi1 ^ ωj2(43)

`
ÿ

i‰j

hijpXqφ`
V pXqωi1 ^ ωj1 `

ÿ

i‰j

kijpXqφ`
V pXqωi2 ^ ωj2(37’)
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Now we consider restricting this form to the subspace Vi “ wi `z, this subspace has an oriented orthonormal

basis tvi1, vi2u,

ιi : D
`
wi`z ãÑ D`

V

then the restriction rule (7) tells us,

ι˚i φ
p1q

V px1, x2, yq “ φ
p1q

wi`zpx1, x2, yiq ¨ φ`

V K
i

py1, y2, ¨ ¨ ¨, ŷi, ¨ ¨ ¨, ypq

By the SOpzq´invariance, φ
p1q

wi`zpx1, x2, yiq should take the following form,

φ
p1q

wi`zpx1, x2, yiq “ fpyiqgpx21 ` x22q ¨ φ`
V px1, x2, yiq

here f, g are both polynomials, and f is independent of i because of the naturality property (8) following

from the restriction rule. Now we consider the value of both sides at vector pair pvi1, vi2q, we get

fipx1, x2, yq “ pφ
p1q

wi`zpx1, x2, yiqpvi1, vi2qq ¨ φ`
V px1, x2, yiq

´1

“ fpyiqgpx21 ` x22q

Now we consider the SOpV`q action on the form (43), under the basis twiu, we choose A “ paijq P SOpV`q,

then

w1
i “

p
ÿ

k“1

akiwk, v
1
ij “

p
ÿ

k“1

akivkj , y
1
i “

p
ÿ

k“1

akiyk

A P SOpzKq acts on (43) by

A˚φ
p1q

V pXq “

p
ÿ

i“1

fpAXqgpAXqφ`
V pAXqω1

i1 ^ ω1
i2 `

ÿ

i‰j

gijpAXqφ`
V pAXqω1

i1 ^ ω1
j2

`
ÿ

i‰j

hijpAXqφ`
V pAXqω1

i1 ^ ω1
j1 `

ÿ

i‰j

kijpAXqφ`
V pAXqω1

i2 ^ ω1
j2(44)

By SOpzKq´invariance, we have

A˚φ
p1q

V “ φ
p1q

V

evaluate both sides at the vector pair pv1
i1, v

1
i2q, we get

fp

p
ÿ

k“1

akiykq ¨ gpx21 ` x22q “ φ
p1q

V pXqp

p
ÿ

k“1

akivk1, v
p

ÿ

k“1

akivk2q

“

p
ÿ

k“1

a2kifpykq ¨ gpx21 ` x22q `
ÿ

j‰l

ajialigjlpx, yq

divide both sides by gpx21 ` x22q, and denote g1
jl “

gjl
gpx2

1`x2
2q
, we have

fp

p
ÿ

k“1

akiykq “

p
ÿ

k“1

a2kifpykq `
ÿ

j‰l

ajialig
1
jlpx, yq

for each pair j ‰ l, it’s easy to find an element in SOpzKq such that only g1
jl survives in the second term of

the right side (e.g. rotate by π
4 by the plane spanned by wj and wl). Then we see that g1

jl depends only on

y, and it’s a polynomial functions in y1, y2, ¨ ¨ ¨, yn. The previous equation becomes

fp

p
ÿ

k“1

akiykq “

p
ÿ

k“1

a2kifpykq `
ÿ

j‰l

ajialig
1
jlpyq(45)

then since f and g1
jl are polynomial functions, by Lemma (5.1.1), up to a constant multiple,

fpT q “ T 2 ` a, g1
jlpT1, T2, ¨ ¨ ¨, Tnq “ TjTl
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for some a P C. Therefore we have simplified (43) to the following form,

φ
p1q

V px, yq “

˜

p
ÿ

i“1

py2i ` aqωi1 ^ ωi2 `
ÿ

i‰j

yiyjωi1 ^ ωj2

¸

¨ gpx21 ` x22qφ`
V pXq(46)

`
ÿ

i‰j

hijpXqφ`
V pXqωi1 ^ ωj1 `

ÿ

i‰j

kijpXqφ`
V pXqωi2 ^ ωj2(46’)

Now we consider the SOpV´q´invariance, the same computation and argument in (30) and (31) implies (46)

is SOpV´q´invariant, and

hij “ hji

kij “ kji

i.e. (46’)=0. Therefore (43) takes the following form,

φ
p1q

V px, yq “

˜

p
ÿ

i“1

py2i ` aqωi1 ^ ωi2 `
ÿ

i‰j

yiyjωi1 ^ ωj2

¸

¨ gpx21 ` x22qφ`
V pXq(47)

Now we consider the closedness condition, we rewrite (47) as

φ
p1q

V px, yq “
`

ϕ` aΩ ¨ φ`
V

˘

¨ g

where

ϕ “

˜

p
ÿ

i“1

yiωi1

¸

^

˜

p
ÿ

i“1

yiωi2

¸

and

Ω “

p
ÿ

i“1

ωi1 ^ ωi2

we know that Ω is the Kähler form of D`
V , it’s closed. Then by applying the d´operator (32),

(48) dφ
p1q

V “ pa`
1

4π
q

`

Ω ^ dφ`
V

˘

¨ g `
`

ϕ` aΩ ¨ φ`
V

˘

^ dg

the closedness condition is reduced to the computation of dφ`
V and dg.

dφ`
V “

p
ÿ

j“1

ωpvj1qφ`
V ¨ ωj1 `

p
ÿ

j“1

ωpvj1qφ`
V ¨ ωj1

“ ´4πφ`
V

˜

p
ÿ

j“1

x1yj ¨ ωj1 `

p
ÿ

j“1

x2yjφ
`
V ¨ ωj2

¸

dg “

p
ÿ

j“1

ωpvj1qg ¨ ωj1 `

p
ÿ

j“1

ωpvj1qg ¨ ωj1

“ g1 ¨

˜

p
ÿ

j“1

x1yj ¨ ωj1 `

p
ÿ

j“1

x2yj ¨ ωj2

¸

then the first term in (48) is

pa`
1

4π
q

`

Ω ^ dφ`
V

˘

¨ g “ ´p1 ` 4πaqφ`
V ¨ g ¨

˜

x1
ÿ

i,j

yjωi1 ^ ωi2 ^ ωj1 ` x2
ÿ

i,j

yjωi1 ^ ωi2 ^ ωj2

¸

the second term in (48) is

`

ϕ` aΩ ¨ φ`
V

˘

¨ dg “ aΩ ¨ φ`
V ¨ g1 ¨

˜

p
ÿ

j“1

x1yj ¨ ωj1 `

p
ÿ

j“1

x2yj ¨ ωj2

¸

“ aφ`
V ¨ g1 ¨

˜

x1
ÿ

i,j

yjωi1 ^ ωi2 ^ ωj1 ` x2
ÿ

i,j

yjωi1 ^ ωi2 ^ ωj2

¸
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Note that

x1
ÿ

i,j

yjωi1 ^ ωi2 ^ ωj1 ` x2
ÿ

i,j

yjωi1 ^ ωi2 ^ ωj2

“
ÿ

iăj

x1pyj ´ yiqωi1 ^ ωi2 ^ ωj1 `
ÿ

iăj

x2pyj ´ yiqωi1 ^ ωi2 ^ ωj2

is non-zero, then we necessarily have

(49)
`

ag1 ´ p1 ` 4πaqg
˘

¨ φ`
V “ 0

If g is not a constant, then degpg1q ă degpgq, we must have 1 ` 4πa “ 0, but then ag1 “ 0, since g is not a

constant, a “ 0, which is a contradiction. Therefore we must have g is a constant, then g1 “ 0, this implies

1 ` 4πa “ 0, i.e. a “ ´ 1
4π . This finishes the proof the theorem.

Lemma 5.1.1. If f and g1
jl are both polynomial functions, then the only solutions (up to nonzero constant)

to (45) are given by

fpT q “ T 2 ` a, g1
jlpT1, T2, ¨ ¨ ¨, Tnq “ TjTl

for some a P C

Proof: We make a particular choice of A P SOpV`q

Awi “ cospθqwi ` sinpθqwj

Awi “ ´sinpθqwi ` cospθqwj

then (45) becomes,

fpcospθqyi ` sinpθqyjq “ cospθq2fpyiq ` sinpθq2fpyjq ` cospθqsinpθqpg1
ijpyq ` g1

jipyqq

suppose fpT q “
ř

mě0 cmT
m, then set yj “

?
´1yi, and suppose pg1

ij ` g1
jiqpyi,

?
´1yiq “

ř

mě0
amy

m
i , we get

ÿ

mě0

cme
imθymi “

ÿ

mě0

`

pcospθq2 ` p´iqmsinpθq2qcm ` cospθqsinpθqam
˘

ymi

therefore by comparing coefficients,

(50) cme
imθ “ pcospθq2 ` p´iqmsinpθq2qcm ` cospθqsinpθqam, @m ě 0, @θ P R

For m ‰ 0, 2, the only possibility for (50) to hold is cm “ am “ 0 (view θ as a complex variable and compare

degrees). This concludes the proof.

5.2. Interaction with Weil representation.

Appendix A. Spin-Oscillator representation

A.1. Oscialltor representation and inifinitesimal Fock model. In this appendix, we construct the

infinitesimal representation associated to the Weil representation at the Archimedean place. Suppose pW,ă

, ąq is a symplectic space of dimension 2n over R, we fix a standard basis te1, e2, ¨ ¨ ¨, en, f1, f2, ¨ ¨ ¨, fnu for

W , i.e.

(51) ă ei, ej ą“ă fi, fj ą“ 0,ă ei, fj ą“ δij

There is a complex structure on W given by

J :W ÝÑ W

ei ÞÝÑ fi, fi ÞÝÑ ´ei

We then have the following Hodge decomposition,

W bR C “ W1 `W2



22 BAIQING ZHU

where

W1 “ spanCtw1j “ ej ´ ifjunj“1

W2 “ spanCtw2j “ ej ` ifjunj“1

It’s easy to check W1 and W2 are dually paired Lagrangians of the symplectic space W bR C. We use zj to

denote the following linear functional on W1,

zjpwq “ă w,w2j ą

then zj spans the space W˚
1 .

Lemma A.1.1. There is a isomorphism between Sym2pW q and sppW q given by

Sym2pW q
φ

ÝÑ sppW q

x ˝ y ÞÝÑ φpx ˝ yq

where x ˝ y “ xb y ` y b x, and

φpx ˝ yqpzq “ă x, z ą y` ă y, z ą x

Remark A.1.1. Under the symplectic basis we are using, we identify sppnq with the following

sppnq “ t

˜

A B

C ´At

¸

|B,C P SymnpRqu

under the isomorphism φ,

ei ˝ ej ÞÝÑ

˜

0 Eij ` Eji

0 0

¸

fi ˝ fj ÞÝÑ

˜

0 0

´Eij ´ Eji 0

¸

ei ˝ fj ÞÝÑ

˜

´Eij 0

0 Eji

¸

Definition A.1.1. For λ P C˚, the Weyl algebra Wλ associated to pW,ă , ąq is

Wλ “
T pW bR Cq

ideal generated by xb y ´ y b x´ λ ă x, y ą

Remark A.1.2. There is a natural filtration F pWλ on Wλ inherited by the degree filtration on the tensor

algebra T pW q, and it’s easy to check that

rF pWλ, F
qWλs Ă F p`q´2Wλ

where r , s is the Lie bracket on the associated algebra Wλ. Therefore F 2Wλ forms a complex Lie algebra.

There is natural isomorphisms,

F 2Wλ{F 1Wλ » S2pW qC » sppW qC

We can even define a spliting homomorphism between Lie algebras,

j : sppW qC » Sym2pW qC ÝÑ F 2Wλ

x ˝ y ÞÝÑ ´
1

2λ
pxy ` yxq

Now we consider the left ideal I of the Weyl algebra Wλ generated by W1, then it’s easy to see that,

Wλ{I » SympW2q » SympW˚
1 q » Crz1, z2, ¨ ¨ ¨, zns
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there is a natural action ρλ of Wλ on Wλ{I, hence on Crz1, z2, ¨ ¨ ¨, zns, by left multiplication. It is given

explicitly by

ρλpw1jq “ 2iλ
B

Bzj

ρλpw2jq “ zj

then we can construct a representation of Lie algebra sppW qC via j, i.e. σλ “ ρλ ˝ j. Note that Sym2pW bR

Cq » Sym2pW1q ‘ pW1 bC W2q ‘ Sym2pW2q. σλ can be given explicitly by

σλpw1j ˝ w1kq “ 4λ
B2

BzjBzk

σλpw2j ˝ w2kq “ ´
1

λ
zjzk

σλpw1j ˝ w2kq “ ´ipzk
B

Bzj
` zj

B

Bzk
q

It’s natural to ask whether this Lie algebra representation gives rise to a Lie group representation, this is

not a trivial question because the representation space Crz1, z2, ¨ ¨ ¨, zns is infinite dimensional. It turns out

we should consider a larger space, before we state the result, let’s first consider the relation between σλ and

the Weil representation of SppW q on the Schwartz space SpRnq. The Heisenberg group HpW q “ W ˆR acts

on SpRnq with central character

e8 : R ÝÑ C˚

t ÞÝÑ e2πit

it is an irreducible representation of the Heisenberg group, and the associated infinitesimal representation is

given by

ωpejq “
B

Bxj

ωpfjq “ 2πixj

It’s easy to verify that,

ωpeiq ˝ ωpfjq ´ ωpfjq ˝ ωpeiq “ 2πi ă ei, fj ą

therefore ω extends to a representation of W2πi. Now we compare ω with σ2πi

Theorem A.1.1. There exists an injective W2πi´intertwining operator

ι : Crz1, z2, ¨ ¨ ¨, zns ÝÑ SpRnq

s.t. 1 is mapped to the Gaussian φ0 on Rn, the image is a dense subspace of SpRnq

Proof: We consider the subrepresentation S 1 of ω generated by the Gaussian φ0. It’s trivial to see that

W1 annihilates φ0, hence

S 1 “ W2πi ¨ φ0 » W2πi{I » Crz1, z2, ¨ ¨ ¨, zns

Remark A.1.3. It’s easy to check that S 1 is exactly the space of Hermite functions, i.e.

S 1 “ tP pxq ¨ φ0|P is a polynomialu

it is said in [3] that this subspace is exactly the Upnq´finite functions of SpRnq.

Now we find the right space to extend the Lie algebra representation to Lie group representation,

Proposition A.1.1. σ2πi gives rise to a representation on the Schwatz space SpRnq of the complex symplectic

group SppW qpCq, also a representation of real group MppW q, which is a double cover of SppV q.
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A.2. Spin representation. Most of the results in this section is parallel to the previous one. Suppose V

is a finite dimensional vector space over R, equipped with a nondegenerate symmetric bilinear form p , q.

Lemma A.2.1. The following map is an isomorphism

^2V
ϕ

ÝÑ opV q

x^ y ÞÝÑ ϕpx^ yq

where

ϕpx^ yqpzq “ px, zqy ´ py, zqx

Definition A.2.1. For λ P C˚, the complex Clifford algebra Vλ associated to pV, p , qq is

Vλ “
T pV bR Cq

ideal generated by xb y ` y b x´ λpx, yq

Remark A.2.1. Contrary to the Weyl algebra associated to a symplectic space, Clifford algebra is of finite

dimensional 2dimRV over C.

Remark A.2.2. There is a natural filtration F pVλ on Vλ inherited by the degree filtration on the tensor

algebra T pV q, and it’s easy to check that

rF pVλ, F
qVλs Ă F p`q´2Vλ

where r , s is the Lie bracket on the associated algebra Vλ. Therefore F 2Vλ forms a complex Lie algebra.

There is natural isomorphisms,

F 2Vλ{F 1Vλ » ^2VC » opV qC

We can even define a splitting homomorphism between Lie algebras,

j : opV qC » ^2pV qC ÝÑ F 2Vλ

x ˝ y ÞÝÑ ´
1

2λ
pxy ´ yxq

Suppose there exists a basis of V , tu1, u2, ¨ ¨ ¨, un, v1, v2, ¨ ¨ ¨, vnu s.t.

(52) pui, ujq “ pvi, vjq “ 0, pui, vjq “ pvj , uiq “ δij

define V1 “ spanRui
n
i“1, V2 “ spanRvi

n
i“1. We use αi (resp. βi) to denote the coordinate function on V1

(resp. V2) of ui (resp. vi). Now we consider the left ideal J of the Clifford algebra Vλ generated by V1,

then it’s easy to see that,

Vλ{J » ^pV2qC » ^pV ˚
1 qC

this gives a natural action ρλ of Vλ on the wedge algebra ^pV ˚
1 qC, it is given explicitly by

ρλpujq “ λIuj
(53)

ρλpvjq “ αi^(54)

here Iuj
is the interior multiplication on the wedge algebra

pIuj
fqpXq “ fpuj , Xq

Therefore by the splitting map j, we get a representation of opV q on the wedge algebra ^pV ˚
1 qC, i.e. σλ “

ρλ ˝ j, and it is given explicitly by

σλpuj ˝ ukq “ ´
λ

2
pIujIuk

´ Iuk
Iuj q

σλpuj ˝ vkq “ αk ^ Iuj
´

1

2
δjk

σλpvj ˝ vkq “
1

2λ
pαk ^ αj ^ ´αj ^ αk^q
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from these formulas, we see that uj ˝ uk lower the degree by 2, uj ˝ vk keeps the degree unchanged, vj ˝ vk

raise the degree by 2. Since the wedge algebra ^pV ˚
1 qC is of finite dimensional, we have

Proposition A.2.1. σλ gives rise to a finite dimensional representation of the complex orthogonal group

SOpV qpCq, also a finite dimensional representation of real group SpinpV q, which is a double cover of SOpV q.

A.3. Ortho-symplectic algebra. In this section, we combine the construction in the previous two sections

together and construct a representation which is important in finding the K8´invariant.

Suppose pW,ă , ąq is a symplectic space, and pV, p , qq is a symmetric space, we use w (resp. v) to

denote the vector in W (resp. V ).

Definition A.3.1. For λ P C˚, the ortho-symplectic algebra associated to pW,ă , ąq and pV, p , qq is

TλpW,V q “
T ppW ‘ V q bR Cq

tv b v1 ` v1 b v ´ λpv, v1q, w b w1 ´ w1 b w ´ λ ă w,w1 ą, w b v ´ v b wu

Then we know from the previous two sections that when V is split orthogonal, i.e. admits a basis of the

form in (52), TλpW,V q admits an action on the following algebra

SympW˚
1 q

â

^V ˚
1 C(55)

i.e. we have a homomorphism of associated algebra,

TλpW,V q ÝÑ EndCpSympW˚
1 q

â

^V ˚
1 Cq

we use T̃λpW,V q to denote the image of this homomorphism.

TλpW,V q also admits a degree filtration inherited from the tensor algebra, heuristics from previous two

sections motivate us to consider the degree 2 part, the natural bracket on the associated algebra gives,

rF pTλpW,V q, F qTλpW,V qs Ă F p`q´2TλpW,V q

therefore F 2TλpW,V q is a Lie algebra. We have the following isomorphism

F 2TλpW,V q{F 1TλpW,V q » Sym2WC ‘ ^2VC ‘ pW b V qC(56)

and the splitting is given by

j : Sym2WC ‘ ^2VC ‘ pW b V qC ÝÑ F 2TλpW,V q

w ˝ w1 ÞÝÑ ´
1

2λ
pww1 ` w1wq

v ˝ v1 ÞÝÑ ´
1

2λ
pvv1 ´ v1vq

v ˝ w ÞÝÑ ´
1

2λ
pvw ` vwq

By the identification

sppW q » Sym2W, opV q » ^2V

we therefore obtain an Lie algebra representation of sppW q‘opV q on (55) when λ “ 2πi. Actually we can get

more, with the Lie bracket given by the embedding j, the space (56) admits a structure of Lie superalgebra,

we denote it by g̃, the grading is given by

g̃0 “ sppW q ‘ opV q, g̃1 “ W b V

What we actually get is a representation of the Lie superalgebra g̃.
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We consider the following special choice of W and V . We choose X to be an arbitrary finite dimensional

vector space over R equipped with a non-degenerate symmetric form p , qX , we use W and V0 to denote the

standard symplectic space and split orthogonal space, then we define

W “ W bX, V “ V0 bX

it’s easy to see that W and V are also symplectic and split orthogonal space if we equip W with p , qXb ă , ą

and p , qX b p , q respectively. Note that opXq naturally injects into sppWq and opVq.

Theorem A.3.1. The centralizer of opXq in g̃ is also a Lie superalgebra, we denote it by Γ, then

Γ0 “ sppW qC ‘ opV0qC Ă g̃0, Γ1 “ pW b V0qC Ă g̃1

and moreover,

T̃2πipW,VqSOpV q
`

“ the subalgebra generated by Γ inside T̃2πipW,Vq

Remark A.3.1. Here the second inclusion

Γ1 “ pW b V0qC Ă g̃1

is realized as

pW b V0qC » HomCpWC, V0Cq ãÑ HomCpWC bXC, V0C bXCq » HomCpWC,VCq » pW b VqC
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