The
$$6/20$$

Definite integral:
 $\int_{G}^{h} fixidx = \lim_{|P| \to 0} \sum_{r} fix_{r} \Delta x_{r}$
=) Grea under a function!

The fundamental theorem of Calculus:
1. Let
$$f$$
 be a continuous function on $[a, b]$, the
 $g'(x) = \int_{a}^{x} f(t) dt$ is an entireductive of f
i.e. $g'(x) = f(x)$
2. Let F be an antiderivative of f , the
 $\int_{a}^{b} f(x) dx = F(b) - F(a)$
or, $\int_{a}^{b} F'(x) dx = F(b) - F(a)$
instantaneous instantaneous
rate of charge they in x

We need a convenient notation for antiderivatives that makes them easy to work with. Because of the relation between antiderivatives and integrals given by the Fundamental Theorem, the notation $\int f(x) dx$ is traditionally used for an antiderivative of f and is called an **indefinite integral**. Thus

$$\int f(x) dx = F(x)$$
 means $F'(x) = f(x)$

For example, we can write

$$\int x^2 dx = \frac{x^3}{3} + C \qquad \text{because} \qquad \frac{d}{dx} \left(\frac{x^3}{3} + C \right) = x^2$$

Distinction with definite integral, he don't have integral region, s.t. [9, b]

1 Table of Indefinite Integrals

$$\int cf(x) dx = c \int f(x) dx \qquad \int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

$$\int k dx = kx + C$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1) \qquad \int \frac{1}{x} dx = \ln |x| + C$$

$$\int e^x dx = e^x + C \qquad \int b^x dx = \frac{b^x}{\ln b} + C$$

$$\int \sin x dx = -\cos x + C \qquad \int \cos x dx = \sin x + C$$

$$\int \sec^2 x dx = \tan x + C \qquad \int \csc^2 x dx = -\cot x + C$$

$$\int \sec x \tan x dx = \sec x + C \qquad \int \csc x \cot x dx = -\csc x + C$$

$$\int \frac{1}{x^2 + 1} dx = \tan^{-1}x + C \qquad \int \frac{1}{\sqrt{1 - x^2}} dx = \sin^{-1}x + C$$

$$\int \sinh x dx = \cosh x + C \qquad \int \cosh x dx = \sinh x + C$$

EXAMPLE 4 Find $\int_0^2 \left(2x^3 - 6x + \frac{3}{x^2 + 1}\right) dx$ and interpret the result in terms of areas.

SOLUTION The Fundamental Theorem gives

$$\int_{0}^{2} \left(2x^{3} - 6x + \frac{3}{x^{2} + 1} \right) dx = 2 \frac{x^{4}}{4} - 6 \frac{x^{2}}{2} + 3 \tan^{-1}x \Big]_{0}^{2}$$
$$= \frac{1}{2}x^{4} - 3x^{2} + 3 \tan^{-1}x \Big]_{0}^{2}$$
$$= \frac{1}{2}(2^{4}) - 3(2^{2}) + 3 \tan^{-1}2 - 0$$
$$= -4 + 3 \tan^{-1}2$$

EXAMPLE 2 Evaluate
$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta$$
.

SOLUTION This indefinite integral isn't immediately apparent from Table 1, so we use trigonometric identities to rewrite the function before integrating:

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right) d\theta$$
$$= \int \csc \theta \, \cot \theta \, d\theta = -\csc \theta + C$$

Recall :

given pts
$$\chi_{1,-}, \chi_{r}$$
, construct $P(x) = (x-x_{i})^{m_{i}} \cdots (x-\chi_{r})^{m_{r}}$
 $M_{1,-}, m_{r}$
 b_{r}, ze_{r}, χ_{r}

4 The Substitution Rule If u = g(x) is a differentiable function whose range is an interval *I* and *f* is continuous on *I*, then

$$\int f(g(x)) g'(x) \, dx = \int f(u) \, du$$

$$\underline{p+}: S_{u} = F(x) + C = \int f(g(x)) g'(x) dx$$

$$G(u) + D = \int f(u) du$$

$$=) G'(u) = f(u)$$

$$\left(G(g(x))\right)' = f'(g(x)) \cdot g'(x) = F'(x)$$

$$=> G(u) \longrightarrow F(x)$$

Another viewpoint

$$\int f'(g(x)) g'(x) dx \xrightarrow{u = g(x)} \int f'(u) du$$

$$u = g(x) =) \quad u' = g'(x) = \frac{du}{dx} \xleftarrow{in + o + 5 + o + o + f} in x$$
instantants rate of chye of $u, v = v = v$

EXAMPLE 1 Find $\int x^3 \cos(x^4 + 2) dx$.

SOLUTION We make the substitution $u = x^4 + 2$ because its differential is $du = 4x^3 dx$, which, apart from the constant factor 4, occurs in the integral. Thus, using $x^3 dx = \frac{1}{4} du$ and the Substitution Rule, we have

$$\int x^{3} \cos(x^{4} + 2) \, dx = \int \cos u \cdot \frac{1}{4} \, du = \frac{1}{4} \int \cos u \, du$$
$$= \frac{1}{4} \sin u + C$$
$$= \frac{1}{4} \sin(x^{4} + 2) + C$$

Notice that at the final stage we had to return to the original variable *x*.

EXAMPLE 2 Evaluate $\int \sqrt{2x+1} dx$.

SOLUTION 1 Let u = 2x + 1. Then du = 2 dx, so $dx = \frac{1}{2} du$. Thus the Substitution Rule gives

$$\int \sqrt{2x+1} \, dx = \int \sqrt{u} \cdot \frac{1}{2} \, du = \frac{1}{2} \int u^{1/2} \, du$$
$$= \frac{1}{2} \cdot \frac{u^{3/2}}{3/2} + C = \frac{1}{3} u^{3/2} + C$$
$$= \frac{1}{3} (2x+1)^{3/2} + C$$

SOLUTION 2 Another possible substitution is $u = \sqrt{2x + 1}$. Then

$$du = \frac{dx}{\sqrt{2x+1}}$$
 so $dx = \sqrt{2x+1} du = u du$

(Or observe that $u^2 = 2x + 1$, so $2u \, du = 2 \, dx$.) Therefore

$$\int \sqrt{2x+1} \, dx = \int u \cdot u \, du = \int u^2 \, du$$
$$= \frac{u^3}{3} + C = \frac{1}{3}(2x+1)^{3/2} + C$$

EXAMPLE 2 Evaluate $\int \frac{\cos \theta}{\sin^2 \theta} d\theta$.

SOLUTION This indefinite integral isn't immediately apparent from Table 1, so we use trigonometric identities to rewrite the function before integrating:

$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right) d\theta$$
$$= \int \csc \theta \cot \theta d\theta = -\csc \theta + C$$
$$\int \frac{\cos \theta}{\sin^2 \theta} d\theta = \int \frac{1}{\sin^2 \theta} d(\sin \theta)$$
$$\frac{\sqrt{2} \sin^2 \theta}{\sin^2 \theta} d\theta = \int \frac{1}{\sqrt{2}} d\theta = -\frac{1}{2\ell} + \zeta = -\frac{1}{\sin^2 \theta} + \zeta$$
$$= -\csc \theta + \zeta$$

EXAMPLE 3 Find
$$\int \frac{x}{\sqrt{1-4x^2}} dx$$
.

SOLUTION Let $u = 1 - 4x^2$. Then du = -8x dx, so $x dx = -\frac{1}{8} du$ and

$$\int \frac{x}{\sqrt{1-4x^2}} \, dx = -\frac{1}{8} \int \frac{1}{\sqrt{u}} \, du = -\frac{1}{8} \int u^{-1/2} \, du$$
$$= -\frac{1}{8} (2\sqrt{u}) + C = -\frac{1}{4} \sqrt{1-4x^2} + C$$

EXAMPLE 4 Evaluate $\int e^{5x} dx$. **SOLUTION** If we let u = 5x, then du = 5 dx, so $dx = \frac{1}{5} du$. Therefore $\int e^{5x} dx = \frac{1}{5} \int e^{u} du = \frac{1}{5} e^{u} + C = \frac{1}{5} e^{5x} + C$

EXAMPLE 5 Find $\int \sqrt{1 + x^2} x^5 dx$.

SOLUTION An appropriate substitution becomes more apparent if we factor x^5 as $x^4 \cdot x$. Let $u = 1 + x^2$. Then $du = 2x \, dx$, so $x \, dx = \frac{1}{2} \, du$. Also $x^2 = u - 1$, so $x^4 = (u - 1)^2$:

$$\int \sqrt{1 + x^2} \, x^5 \, dx = \int \sqrt{1 + x^2} \, x^4 \cdot x \, dx$$

= $\int \sqrt{u} \, (u - 1)^2 \cdot \frac{1}{2} \, du = \frac{1}{2} \int \sqrt{u} \, (u^2 - 2u + 1) \, du$
= $\frac{1}{2} \int (u^{5/2} - 2u^{3/2} + u^{1/2}) \, du$
= $\frac{1}{2} (\frac{2}{7}u^{7/2} - 2 \cdot \frac{2}{5}u^{5/2} + \frac{2}{3}u^{3/2}) + C$
= $\frac{1}{7} (1 + x^2)^{7/2} - \frac{2}{5} (1 + x^2)^{5/2} + \frac{1}{3} (1 + x^2)^{3/2} + C$

EXAMPLE 6 Evaluate $\int \tan x \, dx$.

SOLUTION First we write tangent in terms of sine and cosine:

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx$$

This suggests that we should substitute $u = \cos x$, since then $du = -\sin x \, dx$ and so $\sin x \, dx = -du$:

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\int \frac{1}{u} \, du$$
$$= -\ln|u| + C = -\ln|\cos x| + C$$

gage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203 served. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). nt does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SECTION 5.5 The Substitution Rule 423

Notice that $-\ln|\cos x| = \ln(|\cos x|^{-1}) = \ln(1/|\cos x|) = \ln|\sec x|$, so the result of Example 6 can also be written as

$$\int \tan x \, dx = \ln |\sec x| + C$$

5

Enbititation Rule for definite integral,

When evaluating a *definite* integral by substitution, two methods are possible. One method is to evaluate the indefinite integral first and then use the Fundamental Theorem. For instance, using the result of Example 2, we have

$$\int_0^4 \sqrt{2x+1} \, dx = \int \sqrt{2x+1} \, dx \Big]_0^4$$
$$= \frac{1}{3}(2x+1)^{3/2} \Big]_0^4 = \frac{1}{3}(9)^{3/2} - \frac{1}{3}(1)^{3/2}$$
$$= \frac{1}{3}(27-1) = \frac{26}{3}$$

Another method, which is usually preferable, is to change the limits of integration when the variable is changed.

6 The Substitution Rule for Definite Integrals If g' is continuous on [a, b] and f is continuous on the range of u = g(x), then

$$\int_{a}^{b} f(g(x)) g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$$

PROOF Let *F* be an antiderivative of *f*. Then, by (3), F(g(x)) is an antiderivative of f(g(x))g'(x), so by Part 2 of the Fundamental Theorem, we have

$$\int_{a}^{b} f(g(x)) g'(x) \, dx = F(g(x)) \Big]_{a}^{b} = F(g(b)) - F(g(a))$$

But, applying FTC2 a second time, we also have

$$\int_{g(a)}^{g(b)} f(u) \, du = F(u) \Big]_{g(a)}^{g(b)} = F(g(b)) - F(g(a))$$

EXAMPLE 7 Evaluate $\int_0^4 \sqrt{2x+1} \, dx$ using (6).

SOLUTION Using the substitution from Solution 1 of Example 2, we have u = 2x + 1 and $dx = \frac{1}{2} du$. To find the new limits of integration we note that

when x = 0, u = 2(0) + 1 = 1 and when x = 4, u = 2(4) + 1 = 9

Therefore $\int_{0}^{4} \sqrt{2x+1} \, dx = \int_{1}^{9} \frac{1}{2} \sqrt{u} \, du$ $= \frac{1}{2} \cdot \frac{2}{3} u^{3/2} \Big]_{1}^{9}$ $= \frac{1}{3} (9^{3/2} - 1^{3/2}) = \frac{26}{3}$

EXAMPLE 8 Evaluate
$$\int_{1}^{2} \frac{dx}{(3-5x)^{2}}$$
.

SOLUTION Let u = 3 - 5x. Then du = -5 dx, so $dx = -\frac{1}{5} du$. When x = 1, u = -2 and when x = 2, u = -7. Thus

$$\int_{1}^{2} \frac{dx}{(3-5x)^{2}} = -\frac{1}{5} \int_{-2}^{-7} \frac{du}{u^{2}} = -\frac{1}{5} \left[-\frac{1}{u} \right]_{-2}^{-7} = \frac{1}{5u} \Big]_{-2}^{-7}$$
$$= \frac{1}{5} \left(-\frac{1}{7} + \frac{1}{2} \right) = \frac{1}{14}$$

EXAMPLE 9 Evaluate $\int_{1}^{e} \frac{\ln x}{x} dx$.

SOLUTION We let $u = \ln x$ because its differential du = (1/x) dx occurs in the integral. When x = 1, $u = \ln 1 = 0$; when x = e, $u = \ln e = 1$. Thus

$$\int_{1}^{e} \frac{\ln x}{x} \, dx = \int_{0}^{1} u \, du = \frac{u^{2}}{2} \bigg|_{0}^{1} = \frac{1}{2}$$

Symmetry in definite integral

Symmetry

The next theorem uses the Substitution Rule for Definite Integrals (6) to simplify the calculation of integrals of functions that possess symmetry properties.

7 Integrals of Symmetric Functions Suppose f is continuous on [-a, a].
(a) If f is even [f(-x) = f(x)], then ∫_{-a}^a f(x) dx = 2 ∫₀^a f(x) dx.
(b) If f is odd [f(-x) = -f(x)], then ∫_{-a}^a f(x) dx = 0.

PROOF We split the integral in two:

8
$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx = -\int_{0}^{-a} f(x) dx + \int_{0}^{a} f(x) dx$$

In the first integral on the far right side we make the substitution u = -x. Then du = -dx and when x = -a, u = a. Therefore

$$-\int_0^{-a} f(x) \, dx = -\int_0^a f(-u) \, (-du) = \int_0^a f(-u) \, du$$

and so Equation 8 becomes

9
$$\int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(-u) \, du + \int_{0}^{a} f(x) \, dx$$

(a) If f is even, then f(-u) = f(u) so Equation 9 gives

$$\int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(u) \, du + \int_{0}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx$$

EXAMPLE 10 Because $f(x) = x^6 + 1$ satisfies f(-x) = f(x), it is even and so

$$\int_{-2}^{2} (x^{6} + 1) dx = 2 \int_{0}^{2} (x^{6} + 1) dx$$
$$= 2 \left[\frac{1}{7} x^{7} + x \right]_{0}^{2} = 2 \left(\frac{128}{7} + 2 \right) = \frac{284}{7}$$

EXAMPLE 11 Because $f(x) = (\tan x)/(1 + x^2 + x^4)$ satisfies f(-x) = -f(x), it is odd and so

$$\int_{-1}^{1} \frac{\tan x}{1 + x^2 + x^4} \, dx = 0$$

pplications of definite integri

(urves

setnech

WQ a

FIGURE 1

Area Between Curves: Integrating With Respect to x

Consider the region S shown in Figure 1 that lies between two curves y = f(x) and y = g(x) and between the vertical lines x = a and x = b, where f and g are continuous functions and $f(x) \ge g(x)$ for all x in [a, b].

Just as we did for areas under curves in Section 5.1, we divide S into n strips of equal width and then we approximate the *i*th strip by a rectangle with base Δx and height $f(x_i^*) - g(x_i^*)$. (See Figure 2. If we like, we could take all of the sample points to be right endpoints, in which case $x_i^* = x_i$.) The Riemann sum

$$\sum_{i=1}^n \left[f(x_i^*) - g(x_i^*) \right] \Delta x$$

is therefore an approximation to what we intuitively think of as the area of S.

This approximation appears to become better and better as $n \rightarrow \infty$. Therefore we define the **area** A of the region S as the limiting value of the sum of the areas of these approximating rectangles.

1
$$A = \lim_{n \to \infty} \sum_{i=1}^{n} [f(x_i^*) - g(x_i^*)] \Delta x$$

We recognize the limit in (1) as the definite integral of f - g. Therefore we have the following formula for area.

2 The area *A* of the region bounded by the curves y = f(x), y = g(x), and the lines x = a, x = b, where *f* and *g* are continuous and $f(x) \ge g(x)$ for all x in [a, b], is

$$A = \int_{a}^{b} \left[f(x) - g(x) \right] dx$$

EXAMPLE 1 Find the area of the region bounded above by $y = e^x$, bounded below by y = x, and bounded on the sides by x = 0 and x = 1.

SOLUTION The region is shown in Figure 4. The upper boundary curve is $y = e^x$ and the lower boundary curve is y = x. So we use the area formula (2) with $f(x) = e^x$, g(x) = x, a = 0, and b = 1:

$$A = \int_0^1 (e^x - x) \, dx = e^x - \frac{1}{2}x^2 \Big]_0^1$$
$$= e - \frac{1}{2} - 1 = e - 1.5$$

FIGURE 5

 $y_T = 2x - x^2$

L

EXAMPLE 2 Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$.

SOLUTION We first find the points of intersection of the parabolas by solving their equations simultaneously. This gives $x^2 = 2x - x^2$, or $2x^2 - 2x = 0$. Thus 2x(x - 1) = 0, so x = 0 or 1. The points of intersection are (0, 0) and (1, 1). We see from Figure 6 that the top and bottom boundaries are

$$y_T = 2x - x^2$$
 and $y_B = x^2$

The area of a typical rectangle is

$$(y_T - y_B) \Delta x = (2x - x^2 - x^2) \Delta x = (2x - 2x^2) \Delta x$$

and the region lies between x = 0 and x = 1. So the total area is

$$A = \int_0^1 (2x - 2x^2) \, dx = 2 \int_0^1 (x - x^2) \, dx$$
$$= 2 \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = 2 \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{1}{3}$$

General stops:
- Find the integration area!.
Solving equations
. Calculary the definite integral

$$\int_{a}^{b} (f(x) - g(x)) dx$$

١

(0, 0)

If we are asked to find the area between the curves y = f(x) and y = g(x) where $f(x) \ge g(x)$ for some values of x but $g(x) \ge f(x)$ for other values of x, then we split the given region S into several regions S_1, S_2, \ldots with areas A_1, A_2, \ldots as shown in Figure 8. We then define the area of the region S to be the sum of the areas of the smaller regions S_1, S_2, \ldots , that is, $A = A_1 + A_2 + \cdots$. Since

$$|f(x) - g(x)| = \begin{cases} f(x) - g(x) & \text{when } f(x) \ge g(x) \\ g(x) - f(x) & \text{when } g(x) \ge f(x) \end{cases}$$

we have the following expression for A.

3 The area between the curves y = f(x) and y = g(x) and between x = a and x = b is $A = \int_{a}^{b} |f(x) - g(x)| dx$

EXAMPLE 4 Find the area of the region bounded by the curves $y = \sin x$, $y = \cos x$, x = 0, and $x = \pi/2$.

SOLUTION The points of intersection occur when $\sin x = \cos x$, that is, when $x = \pi/4$ (since $0 \le x \le \pi/2$). The region is sketched in Figure 9.

Observe that $\cos x \ge \sin x$ when $0 \le x \le \pi/4$ but $\sin x \ge \cos x$ when $\pi/4 \le x \le \pi/2$. Therefore the required area is

$$A = \int_{0}^{\pi/2} |\cos x - \sin x| \, dx = A_1 + A_2$$

= $\int_{0}^{\pi/4} (\cos x - \sin x) \, dx + \int_{\pi/4}^{\pi/2} (\sin x - \cos x) \, dx$
= $[\sin x + \cos x]_{0}^{\pi/4} + [-\cos x - \sin x]_{\pi/4}^{\pi/2}$
= $\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 0 - 1\right) + \left(-0 - 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right)$
= $2\sqrt{2} - 2$

In this particular example we could have saved some work by noticing that the region is symmetric about $x = \pi/4$ and so

$$A = 2A_1 = 2\int_0^{\pi/4} (\cos x - \sin x) \, dx$$

y = d

FIGURE 10

Some regions are best treated by regarding x as a function of y. If a region is bounded by curves with equations x = f(y), x = g(y), y = c, and y = d, where f and g are continuous and $f(y) \ge g(y)$ for $c \le y \le d$ (see Figure 10), then its area is

$$A = \int_{c}^{d} \left[f(y) - g(y) \right] dy$$

EXAMPLE 5 Find the area enclosed by the line y = x - 1 and the parabola $y^2 = 2x + 6$.

SOLUTION By solving the two equations simultaneously we find that the points of intersection are (-1, -2) and (5, 4). We solve the equation of the parabola for x and

Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203
 d. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
 es not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it

egration

FIGURE 12

notice from Figure 12 that the left and right boundary curves are

 $x_L = \frac{1}{2}y^2 - 3$ and $x_R = y + 1$

We must integrate between the appropriate y-values, y = -2 and y = 4. Thus

$$A = \int_{-2}^{4} (x_R - x_L) \, dy = \int_{-2}^{4} \left[(y+1) - \left(\frac{1}{2}y^2 - 3\right) \right] dy$$

= $\int_{-2}^{4} \left(-\frac{1}{2}y^2 + y + 4 \right) dy$
= $-\frac{1}{2} \left(\frac{y^3}{3} \right) + \frac{y^2}{2} + 4y \Big]_{-2}^{4}$
= $-\frac{1}{6}(64) + 8 + 16 - \left(\frac{4}{3} + 2 - 8\right) = 18$

EXAMPLE 6 Find the area of the region enclosed by the curves y = 1/x, y = x, and $y = \frac{1}{4}x$, using (a) x as the variable of integration and (b) y as the variable of integration.

SOLUTION The region is graphed in Figure 14.

(a) If we integrate with respect to x, we must split the region into two parts because the top boundary consists of two separate curves, as shown in Figure 15(a). We compute the area as

$$A = A_1 + A_2 = \int_0^1 \left(x - \frac{1}{4}x\right) dx + \int_1^2 \left(\frac{1}{x} - \frac{1}{4}x\right) dx$$
$$= \left[\frac{3}{8}x^2\right]_0^1 + \left[\ln x - \frac{1}{8}x^2\right]_1^2 = \ln 2$$

(b) If we integrate with respect to *y*, we also need to divide the region into two parts because the right boundary consists of two separate curves, as shown in Figure 15(b). We compute the area as

$$A = A_1 + A_2 = \int_0^{1/2} (4y - y) \, dy + \int_{1/2}^1 \left(\frac{1}{y} - y\right) \, dy$$
$$= \left[\frac{3}{2}y^2\right]_0^{1/2} + \left[\ln y - \frac{1}{2}y^2\right]_{1/2}^1 = \ln 2$$

HW,

29. $\left(x - \frac{1}{x^2}\right)\left(x^2 + \frac{2}{x}\right)^5 dx$

 $\int \frac{1}{1+x^{'}} dx + \int \frac{x}{1+x^{'}} dx$

78. Evaluate

$$\lim_{n\to\infty}\frac{1}{n}\left[\left(\frac{1}{n}\right)^9+\left(\frac{2}{n}\right)^9+\left(\frac{3}{n}\right)^9+\cdots+\left(\frac{n}{n}\right)^9\right]$$

19. Evaluate

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n}\sqrt{n+1}} + \frac{1}{\sqrt{n}\sqrt{n+2}} + \dots + \frac{1}{\sqrt{n}\sqrt{n+n}} \right)$$

(i)
$$y = 12 - x^2$$
, $y = x^2 - 6$

