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We need a convenient notation for antiderivatives that makes them easy to work with.
Because of the relation between antiderivatives and integrals given by the Fundamental
Theorem, the notation | f(x) dx is traditionally used for an antiderivative of f and is

called an indefinite integral. Thus

[ r(ax = Fx

Fl(x) = f(»)

means

For example, we can write
3

szdx=x?+ C

3
because @ e + C | =x?
ax \ 3
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[1] Table of Indefinite Integrals
[ cf(x)dx = cff(x) dx

L B = x4 iC

n+1
. X
x"dx =

n+1

+C (n#-1)

e*dx=e*"+ C

™

sin xdx= —cosx+ C

~

sec’xdx =tanx + C

~

secxtan xdx =secx + C

r 1

; dx =tan 'x + C
J x4+ 1

sinh xdx = coshx + C

J 7@ + gLoldx = | f dx + [ () dx

r 1
—dx=In|x|+ C

JoX

. b*
b'dx=——+C

J2 T b

™

cosxdx=smnx+ C

™

csc’xdx = —cotx + C

~

cscxicot-xdy= —csex + €
. |

Y A1l — x?

dx=sin"'x+ C

ﬁcoshxdx= sinhx + C




2

EXAMPLE 4 Find J

areas. 0

SOLUTION The Fundamental Theorem gives

3
(2)«73 — 6x + — o ) dx and interpret the result in terms of
e

2 2

2 5 3 % X 5
2" —0x * —3 dx=2——6—+ 3tan x

T2
x* — 3x?2 + 3 tan lx]o

b |—

—5(2%) — 827+ 3 taii™ 2 —40

= —4 + 3tan"'2

EXAMPLE 2 Evaluate | Cf)szz 9.

Sin

SOLUTION This indefinite integral isn’t immediately apparent from Table 1, so we use
trigonometric identities to rewrite the function before integrating:

cos 0 | cos 6
do = do
vfsin29 j(sin@)(sin@)

=jcscecot0d0=—csc(9+C g
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[4] The Substitution Rule If u = g(x) is a differentiable function whose range is
an interval / and f is continuous on /, then

[ (9 g'x) dx = [ £ d

—_F_‘f—’T {MTTDV F(x)+Z: Jf‘ka’u@)g}x)”{m
G(MJ(D :jf‘(m A

=) G/('/‘) = S:(M

<q( 8@0)) /: )':/(g w)- y/m = F'/(M

= Glu) ~—
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EXAMPLE 1 Find J x3 cos(x* + 2) dx.

SOLUTION We make the substitution # = x* + 2 because its differential is
du = 4x° dx, which, apart from the constant factor 4, occurs in the integral. Thus, using

x*dx =  du and the Substitution Rule, we have
‘ x*cos(x* + 2)dx = ’ cosu -y du=j ‘ cos u du

=£sinu +C
= ;sin(x* +2) + C

Notice that at the final stage we had to return to the original variable x. i

EXAMPLE 2 Evaluate ( V2x + 1dx.

SOLUTION 1 Letu = 2x + 1. Then du = 2 dx, so dx = 5 du. Thus the Substitution
Rule gives

~\/mdx=~\/;-]—du=l~u’/2du
J J Vi cydu=3|

1 w2

232
=i2x+ 1" +C

+C=5u"+C

SOLUTION 2 Another possible substitution is u = /2x + 1. Then

d
du=7x SO dx=+2x+ 1 du=udu

Vv2x +1

(Or observe that u> = 2x + 1, so 2udu = 2 dx.) Therefore
‘~w/2x+ 1 dx = {u cudu = fuzdu

3
=%+C=%(2x+l)3/2+C o



EXAMPLE 2 Evaluate j £on

sin-0

do.

SOLUTION This indefinite integral isn’t immediately apparent from Table 1, so we use
trigonometric identities to rewrite the function before integrating:

jc?sﬁ d9=j( .1 ><0950>d9
sin“0 sin 6 sin 6

=fcsc@cot9d0=—csc0+C O
coy 1% \ ‘
—— {q = f — %(émg)
g SPS S1°@
peie | I R
JULJU_—M+C S;nLQTC
= — C6¢ (91— C
EXAMPLE 3 Find f 2 dx
V1 — 4x?

SOLUTION Letu = 1 — 4x% Then du = —8xdx, so xdx = —g du and

X _ 12 5 1 -1p
[ = j = du = | w2 du
= —g(z\/i) +C=—3/1—4x2 +C

EXAMPLE 4 Evaluate ‘ e dx.
SOLUTION If we let u = 5x, then du = 5dx, sodx = %du. Therefore

[ = 1 i 1 sx
‘eS"d =s|e'du=35e¢"+C=35¢"+C O

[a—



EXAMPLE 5 Find J JI + x2 x5dx.

SOLUTION An appropriate substitution becomes more apparent if we factor x° as
x*+x.Letu=1 + x% Then du = 2xdx, so xdx = ;—du. Alsox’=u — 1, s0
Y= - 1)>%

| VTH37 2% dx = [ YT+ 27 x* - xdx
Jf(u_l)z Ldu jf(u—2u+1)du

=3 @ = 2 + u"?) du

(Gu'2 -2 2u% + 2u?) + C

(

1
2
L 22 S0 s a?)® 4 (0 4 520 € O

EXAMPLE 6 Evaluate J tan x dx.

SOLUTION First we write tangent in terms of sine and cosine:

p sin x
J tan xdx = j dx
COS X
This suggests that we should substitute # = cos x, since then du = —sin x dx and so
sin x dx = —du:
p sin x e 1
Jtanxdx=j x=—J —du
CoS X U
= —In|u|+ C= —In|cosx| + C il
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SECTION 5.5 The Substitution Rule 423

Notice that —In | cos x| = In(| cos x|™") = In(1/|cos x|) = In|sec x|, so the result of
Example 6 can also be written as

[5] “tanxdx=ln|secx|+C
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When evaluating a definite integral by substitution, two methods are possible. One
method is to evaluate the indefinite integral first and then use the Fundamental Theorem.
For instance, using the result of Example 2, we have

-[:\/Zx + 1 dx=j\/2x = ldx]:
= 1@x + 2], = 290 - (1>

=i -n=%

Another method, which is usually preferable, is to change the limits of integration when
the variable is changed.

[6] The Substitution Rule for Definite Integrals If g’ is continuous on [a, b]
and f is continuous on the range of u = g(x), then

CFlg) g () dx = | flu) du

gla

PROOF Let F be an antiderivative of f. Then, by (3), F(g(x)) is an antiderivative of
f(g(x)) g'(x), so by Part 2 of the Fundamental Theorem, we have

" (g) g9 dx = Flg(x)]" = Flg(b)) — Flg(a)

a

But, applying FTC2 a second time, we also have

1o J0) du = F@ = Flgb) = Flg(@)

gla)



EXAMPLE 7 Evaluate J: v2x + 1 dx using (6).

SOLUTION Using the substitution from Solution 1 of Example 2, we have u = 2x + 1
and dx = % du. To find the new limits of integration we note that

whenx=0,u=20) +1=1 and whenx=4, u=24)+1=9

Therefore f: V2x + 1dx = E) S \u du
1,2 2
=1
s %(93/2 o 13/2) — 23_6 o

EXAMPLE 8 Evaluate f (3"—)‘5)2.
— WK

SOLUTION Letu =3 — 5x. Thendu = —5dx,sodx = —5du. Whenx = 1,u = —2
and when x = 2, u = —7. Thus

2 dx l p=7du 1 _L "7_L*7
1(3_5)(')2 5 J-2 u’ 5 u |-2 Su |-,

EXAMPLE 9 Evaluate j —dx.

SOLUTION We let u = In x because its differential du = (1/x) dx occurs in the
integral. Whenx = 1, u =In1 = 0; whenx = e, u = Ine = 1. Thus

2

.1 ‘
jﬂdx—judu=u7]0=% L
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B Symmetry

The next theorem uses the Substitution Rule for Definite Integrals (6) to simplify the
calculation of integrals of functions that possess symmetry properties.

Integrals of Symmetric Functions Suppose f is continuous on [ —a, a].

(a) If fiseven[f(—x) = f(x)], then K f(x)dx =2 J:)af(x) dx.

(b) If £ is odd [ f(—x) = —f(x)], then j f(x) dx = 0.

PROOF We split the integral in two:

8] | rmax=|" fedx+ ["fedr =~ " r(ax + | f(x) dx

—da

In the first integral on the far right side we make the substitution # = —x. Then
du = —dx and when x = —a, u = a. Therefore

[ @ dx = [ f(~u) (=du) = [* f(~u) d

and so Equation 8 becomes

9 jﬂf(x)dx = f:f(—u) du + f:f(x) dx
(a) If fis even, then f(—u) = f(u) so Equation 9 gives

[* r@dx= [ fdu + [* G0 dx =2 [ £ d



EXAMPLE 10 Because f(x) = x° + 1 satisfies f(—x) = f(x), it is even and so
F (x®+ 1)dx = 2[2 (x® + 1) dx
-2 0
2
—oflx7 + x| =2(B +2) =2

EXAMPLE 11 Because f(x) = (tan x)/(1 + x* + x*) satisfies f(—x) = —f(x), it is
odd and so

| tan x
| ——dx =0
=1 1+ +x



A?Q\IH'UOV‘) o\ i}‘k:r\;‘k& 'm‘(u\w\“
AVQa lort’wwm Cnr\)

y — f(“\')

FIGURE 1
S={xy)|lasx=b,
gx) =y = f(x)}

- 74 -
‘l\

How 0(0 b F\M‘A fix)

right endpoints, in which case x* = x;.) The Riemann sum

> [fF) — glaf)] Ax

Vi

y B Area Between Curves: Integrating With Respect to x

Consider the region S shown in Figure 1 that lies between two curves y = f(x) and
y = ¢g(x) and between the vertical lines x = a and x = b, where f and g are continuous
functions and f(x) = g(x) for all x in [a, b].
S Just as we did for areas under curves in Section 5.1, we divide S into n strips of equal
width and then we approximate the ith strip by a rectangle with base Ax and height

0 il\_/ b x  f(xF) — g(xF). (See Figure 2. If we like, we could take all of the sample points to be
y=gix) -

is therefore an approximation to what we intuitively think of as the area of S.

7 |
|
] :
HERE |
| : | |
| |
‘—k\\,& Gyt 1\ - Lil11 :
of o« [ \>/ p X of « I
—g(xF) [ ]I
g Lt ‘7 i (N =
Ax
FIGURE 2 (a) Typical rectangle (b) Approximating rectangles

This approximation appears to become better and better as n — . Therefore we
define the area A of the region S as the limiting value of the sum of the areas of these

approximating rectangles.

|

|

|

|

| e

| HFxf) —glxf)
|

|

|

|

[l

A = lim § [F(xF) — g(x)] Ax

We recognize the limit in (1) as the definite integral of f — g. Therefore we have the

following formula for area.

|
|
|
|
|
!
A

A= "1 - g]dx

[2] The area A of the region bounded by the curves y = f(x), y = g(x), and the lines
x = a, x = b, where f and g are continuous and f(x) = g(x) for all x in [a, b], is




EXAMPLE 1 Find the area of the region bounded above by y = ¢*, bounded below by
y = x, and bounded on the sides by x = 0 and x = 1.

SOLUTION The region is shown in Figure 4. The upper boundary curve is y = e* and
the lower boundary curve is y = x. So we use the area formula (2) with f(x) = e*,
g(x) =x,a=0,and b = 1:

A= f(: (e* — x)dx = e* — %xz]l

0

—e—5—1=e—15 O

FIGURE 5 EXAMPLE 2 Find the area of the region enclosed by the parabolas y = x* and

y =2x — x%
SOLUTION We first find the points of intersection of the parabolas by solving their
equations simultaneously. This gives x> = 2x — x? or 2x* — 2x = 0. Thus
2x(x — 1) = 0, s0 x = 0 or 1. The points of intersection are (0, 0) and (1, 1).
yr=2x—x’ We see from Figure 6 that the top and bottom boundaries are
i
(L yr=2x—x> and  yg=x’
: The area of a typical rectangle is
A 2 Y= X (yr — ye) Ax = (2x — x> — x?) Ax = 2x — 2x?) Ax
(0. 0) L - ,
and the region lies between x = 0 and x = 1. So the total area is
FIGURE 6 A= ‘:}l 2x — 2x%)dx =2 ‘: (x — x%)dx
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If we are asked to find the area between the curves y = f(x) and y = g(x) where
f(x) = g(x) for some values of x but g(x) = f(x) for other values of x, then we split the
given region S into several regions S, S», . . . with areas Ay, A», . . . as shown in Figure 8.
We then define the area of the region S to be the sum of the areas of the smaller regions
S1, 82, ..., thatis, A = A; + A, + .- .. Since

FIGURE 8

2 1) = g(x) when f(x) = g(x)
| x) = ¢()] {g(x) —f() when g(x) = f(x)

we have the following expression for A.

[3] The area between the curves y = f(x) and y = g(x) and between x = a and
x=bhis

A= "1 = g0) | dx

EXAMPLE 4 Find the area of the region bounded by the curves y = sin x, y = cos x,
x=0,and x = 7/2.

SOLUTION The points of intersection occur when sin x = cos x, that is, when x = /4
y=sinx (since 0 < x < 7/2). The region is sketched in Figure 9.
Observe that cos x = sin x when 0 < x = 7/4 but sin x = cos x when
7/4 < x < /2. Therefore the required area is

~

A= ’0"/2|cosx —sinx|dx = A, + A,

0

FIGURE9

LN : ‘
2 ‘ %

/4 . (2,
= ’0" (cos x — sin x) dx + |W/4 (sin x — cos x) dx
Y J

w/2

7 w4 5 2
= [sm x + cos x] + [—cos X — Sin x]
0 w4

1 1 1 1

=<E+$_O_l>+(_0_l+$+ﬁ>
=2y2-2

In this particular example we could have saved some work by noticing that the
region is symmetric about x = /4 and so

A=2A =2 ‘.0"/4 (cos x — sin x) dx O



df———

x=gly)

CH———

tm/4 .
A=2A =2 L (cos x — sin x) dx 5]

M Area Between Curves: Integrating With Respect to y

Some regions are best treated by regarding x as a function of y. If a region is bounded by
curves with equations x = f(y), x = g(y), ¥y = ¢, and y = d, where f and g are continu-
ous and f(y) = g(y) for ¢ = y = d (see Figure 10), then its area is

FIGURE 10

B ‘I [F(y) = g(»]dy

EXAMPLE 5 Find the area enclosed by the line y = x — 1 and the parabola

y>=2x + 6.

y

xp=y+1

FIGURE 12

4
XL é)’z/
0

(_1’ _2) :_2\

SOLUTION By solving the two equations simultaneously we find that the points of
intersection are (—1, —2) and (5, 4). We solve the equation of the parabola for x and
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egration

notice from Figure 12 that the left and right boundary curves are
xL=%y2—3 and xp=y+1

We must integrate between the appropriate y-values, y = —2 and y = 4. Thus

a= [ w—xay =" [6+ 0 - (- 3)]a

~

=" (-2 +y+9ay

4
Ly y?

= (=) +=+4
2(3) 7 "2 .

=—l6)+8+16—-($4+2-8)=18 O
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EXAMPLE 6 Find the area of the region enclosed by the curves y = 1/x, y = x, and

y=- J2x+6
y= ix, using (a) x as the variable of integration and (b) y as the variable of integration.
FIGOREAS SOLUTION The region is graphed in Figure 14.
’ (a) If we integrate with respect to x, we must split the region into two parts because the
: top boundary consists of two separate curves, as shown in Figure 15(a). We compute the
area as
1+ ==
- L A=A+ dr == 2ac+ [P+ - 2x)a
y=x = A 2= ) \x—ax)de + | | = x Jdx
1
Y=x 3 5! N
0 l 2 : = [gx’]“ + [lnx — gx‘]l =1n2
(b) If we integrate with respect to y, we also need to divide the region into two parts
FIGURE 14 because the right boundary consists of two separate curves, as shown in Figure 15(b).

We compute the area as

A=A+ A= [Ty -y + | ()L = )-')dy

JO 1/2

e+ [y = 5], = m2

1/2

(L1

FIGURE 15 (a) (b) |
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78. Evaluate

19. Evaluate

lim

1 1 1
n—>°°<\/;\/n—{—l " \/;m++ \/;\/n+n)




@y=12—x2, y=x>—6

®y=cosx, y=1—cosx, O0sx=sm



