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Steps In Solving Optimization Problems

1. Understand the Problem The first step is to read the problem carefully until
it is clearly understood. Ask yourself: What is the unknown? What are the given
quantities? What are the given conditions?

2. Draw a Diagram In most problems it is useful to draw a diagram and identify
the given and required quantities on the diagram.

3. Introduce Notation Assign a symbol to the quantity that is to be maximized or
minimized (let’s call it Q for now). Also select symbols (a, b, c, . . ., x, y) for other
unknown quantities and label the diagram with these symbols. It may help to use
initials as suggestive symbols—for example, A for area, & for height, 7 for time.

4. Express Q in terms of some of the other symbols from Step 3.

5. If O has been expressed as a function of more than one variable in Step 4, use
the given information to find relationships (in the form of equations) among
these variables. Then use these equations to eliminate all but one of the vari-
ables in the expression for Q. Thus Q will be expressed as a function of one
variable x, say, Q = f(x). Write the domain of this function in the given context.

6. Use the methods of Sections 4.1 and 4.3 to find the absolute maximum or
minimum value of f. In particular, if the domain of f is a closed interval, then
the Closed Interval Method in Section 4.1 can be used.




EXAMPLE 1 A farmer has 2400 ft of fencing and wants to fence off a rectangular field
that borders a straight river. He needs no fence along the river. What are the dimensions
of the field that has the largest area?

Understand the problem
Analogy: Try special cases
Draw diagrams

Area = 100 - 2200 = 220,000 ft*

FIGURE 1

Introduce notation

FIGURE 2
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SOLUTION In order to get a feeling for what is happening in this problem, let’s experi-
ment with some specific cases. Figure 1 (not to scale) shows three possible ways of
laying out the 2400 ft of fencing.

Area =700 - 1000 = 700,000 ft* Area = 1000 - 400 = 400,000 ft*

We see that when we try shallow, wide fields or deep, narrow fields, we get rela-
tively small areas. It seems plausible that there is some intermediate configuration that
produces the largest area.

Figure 2 illustrates the general case. We wish to maximize the area A of the rect-
angle. Let x and y be the depth and width of the rectangle (in feet). Then we express A
in terms of x and y:

A=xy

We want to express A as a function of just one variable, so we eliminate y by express-
ing it in terms of x. To do this we use the given information that the total length of the
fencing is 2400 ft. Thus

2x + y = 2400
From this equation we have y = 2400 — 2x, which gives
A = xy = x(2400 — 2x) = 2400x — 2x?

Note that the largest x can be is 1200 (this uses all the fence for the depth and none for
the width) and x can’t be negative, so the function that we wish to maximize is

A(x) = 2400x — 2x*? 0= x= 1200

The derivative is A'(x) = 2400 — 4x, so to find the critical numbers we solve the
equation

2400 — 4x =0

which gives x = 600. The maximum value of A must occur either at this critical
number or at an endpoint of the interval. Since A(0) = 0, A(600) = 720,000,
and A(1200) = 0, the Closed Interval Method gives the maximum value as
A(600) = 720,000.

[Alternatively, we could have observed that A"(x) = —4 < 0 for all x, so A is
always concave downward and the local maximum at x = 600 must be an absolute
maximum. ]

The corresponding y-value is y = 2400 — 2(600) = 1200, so the rectangular field
should be 600 ft deep and 1200 ft wide. 8]
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In the Applied Project following this
section we investigate the most eco-
nomical shape for a can by taking into
account other manufacturing costs.

EXAMPLE 2 A cylindrical can is to be made to hold 1 L of oil. Find the dimensions
that will minimize the cost of the metal to manufacture the can.

SOLUTION Draw a diagram as in Figure 3, where r is the radius and & the height (both
in centimeters). In order to minimize the cost of the metal, we minimize the total surface
area of the cylinder (top, bottom, and sides). From Figure 4 we see that the sides are
made from a rectangular sheet with dimensions 27rr and h. So the surface area is

A =2mr’ + 2mrh

We would like to express A in terms of one variable, r. To eliminate & we use the
fact that the volume is given as 1 L, which is equivalent to 1000 cm®. Thus

r*h = 1000

which gives & = 1000/(7rr*). Substitution of this into the expression for A gives

mr-

1000) . 2000
r

A=2mr’+ 21'rr( — ) =2mwr- +

We know that » must be positive, and there are no limitations on how large r can be.
Therefore the function that we want to minimize is

2000
A(r) = 2mr? + —— r>0
r

To find the critical numbers, we differentiate:

, 2000 4(mr® — 500)
A(r) = 4ar — - = ~

7

Then A’(r) = 0 when 7r® = 500, so the only critical number is r = /500/7 .

Since the domain of A is (0, ©), we can’t use the argument of Example 1 concerning
endpoints. But we can observe that A'(r) < 0 for r < J/500/7 and A'(r) > 0 for
r > 500/ , so A is decreasing for all r to the left of the critical number and increas-
ing for all r to the right. Thus r = /500/7 must give rise to an absolute minimum.

[Alternatively, we could argue that A(r) —  as r — 0" and A(r) — % as r — ©, s0
there must be a minimum value of A(r), which must occur at the critical number. See
Figure 5.]

The value of & corresponding to r = /500/7 is

1000 1000 500
= 23— =2r

h — —
ar? w(500/m)*?3 T

Thus, to minimize the cost of the can, the radius should be 3/500/7 cm and the height
should be equal to twice the radius, namely, the diameter. ]



First Derivative Test for Absolute Extreme Values Suppose that c is a critical
number of a continuous function f defined on an interval.

(a) If f'(x) > O forall x < cand f'(x) < O for all x > c, then f(c) is the abso-
lute maximum value of f.

(b) If f'(x) < Oforall x < cand f'(x) > 0 for all x > c, then f(c) is the abso-
lute minimum value of f.

(c ) LL)
|
]
|
l /
) l
| I
C C
EXAMPLE 3 Find the point on the parabola y* = 2x that is closest to the point (1, 4).
y - SOLUTION The distance between the point (1, 4) and the point (x, y) is
ol 4) A= as
d=Jax-12+(y-4*
Iy A (See Figure 6.) But if (x, y) lies on the parabola, then x = 5y, so the expression for d
i : becomes
ON1 2 3 4 x . -
d=(3y* =10+ (y -4’
(Alternatively, we could have substituted y = /2x to get d in terms of x alone.)
Instead of minimizing d, we minimize its square:
ElGtiRES 2=f(y) = (Gy*—1)*+ (y — 4

(You should convince yourself that the minimum of d occurs at the same point as the
minimum of d°, but d? is easier to work with.) Note that there is no restriction on y, so
the domain is all real numbers. Differentiating, we obtain

F=2Gy"-1)y+20-49=y"-8

so f'(y) = 0 when y = 2. Observe that f'(y) < 0 when y < 2 and f'(y) > 0 when

y > 2, so by the First Derivative Test for Absolute Extreme Values, the absolute
minimum occurs when y = 2. (Or we could simply say that because of the geometric
nature of the problem, it’s obvious that there is a closest point but not a farthest point.)
The corresponding value of x is x = % y* = 2. Thus the point on y* = 2x closest to

(1, 4) is (2, 2). [The distance between the points is d = /f(2) = \/5_.] o



EXAMPLE 5 Find the area of the largest rectangle that can be inscribed in a semicircle
of radius r.

SOLUTION 1 Let’s take the semicircle to be the upper half of the circle x> + y? = ?

= e with center the origin. Then the word inscribed means that the rectangle has two
2 Y vertices on the semicircle and two vertices on the x-axis as shown in Figure 9.
-r 0 rox Let (x, y) be the vertex that lies in the first quadrant. Then the rectangle has sides of
lengths 2x and vy, so its area is
FIGURE 9 A =2xy
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SECTION 4.7 Optimization Problems 341

To eliminate y we use the fact that (x, y) lies on the circle x> + y? = r? and so

y = /r* — x2. Thus
A = 2xr? — x2

The domain of this function is 0 = x = r. Its derivative is

A = 2m _ 2x? _ 2()“‘ - 2‘\"‘)
\/,.2 — x2 \/rz — x2

which is 0 when 2x2 = 2 that is, x = r/y/2 (since x = 0). This value of x gives a
maximum value of A since A(0) = 0 and A(r) = 0. Therefore the area of the largest

inscribed rectangle is
r r " .
A(—_) = 2—_\/1" -——=r
V2 V2 2

SOLUTION 2 A simpler solution is possible if we think of using an angle as a variable.

Let A be the angle shown in Figure 10. Then the area of the rectangle is
& rsin @ A(0) = (2r cos 0)(r sin ) = r*(2 sin 0 cos #) = r’sin 20
i \ We know that sin 26 has a maximum value of 1 and it occurs when 20 = /2. So A(#)
rcos 6 has a maximum value of »* and it occurs when 0 = /4.
FIGURE 10 Notice that this trigonometric solution doesn’t involve differentiation. In fact, we

didn’t need to use calculus at all. ]
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The geometry behind Newton’s method is shown in Figure 2. We wish to solve an equa-
tion of the form f(x) = 0, so the solutions of the equation correspond to the x-intercepts of
the graph of f. The solution that we are trying to find is labeled r in the figure. We start with
a first approximation x,, which is obtained by guessing, or from a rough sketch of the graph
of f, or from a computer-generated graph of f. Consider the tangent line L to the curve

(xy, fixy))

y=flx) y = f(x) at the point (x, f(x;)) and look at the x-intercept of 7., labeled x». The idea behind
Newton’s method is that the tangent line is close to the curve and so its x-intercept, x», 1S
o _—7 Ix, x, =x close to the x-intercept of the curve (namely, the solution r that we are seeking). Because

the tangent is a line, we can easily find its x-intercept.

To find a formula for x, in terms of x; we use the fact that the slope of L is f'(x;), so
its equation is

y — flx1) = f'(x)(x — x1)

Since the x-intercept of I is x,, we know that the point (x,, 0) is on the line, and so

0 — f(x1) = f'(x1)(x2 — x1)

If f'(x1) # 0, we can solve this equation for x:

_ f(x1)
f'(x)

X2 =— X1

We use x, as a second approximation to r.

Next we repeat this procedure with x; replaced by the second approximation x,
using the tangent line at (x5, f(x,)). This gives a third approximation:

A e = xy — f(x2)
3= X2 p
(xla f(xl)) / f ()C2)
If we keep repeating this process, we obtain a sequence of approximations x, x», X3, X4, . . .
as shown in Figure 3. In general, if the nth approximation is x, and f'(x,) # 0, then
(x2, f(x2)) the next approximation is given by
L > X
0 T/X3 /'x2 X X E] Xp+1 = Xp — f;(—)
Xy f (-xn)

If the numbers x, become closer and closer to r as n becomes large, then we say that
the sequence converges to r and we write

limx,=r

n—>%
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@) Although the sequence of successive approximations converges to the desired solution
for functions of the type illustrated in Figure 3, in certain circumstances the sequence
may not converge. For example, consider the situation shown in Figure 4. You can see
that x» is a worse approximation than x,. This is likely to be the case when f’(x,) is close
to 0. It might even happen that an approximation (such as x; in Figure 4) falls outside the

) domain of f. Then Newton’s method fails and a better initial approximation x; should be

L X chosen. See Exercises 31-34 for specific examples in which Newton’s method works
very slowly or does not work at all.

EXAMPLE 1 Starting with x; = 2, find the third approximation x; to the solution of
the equation x> — 2x — 5 = 0.

SOLUTION We apply Newton’s method with
fx)=x*—-2x—-5 and fl(x) =3x>-2

Newton himself used this equation to illustrate his method and he chose x; = 2 after
some experimentation because f(1) = —6, f(2) = —1, and f(3) = 16. Equation 2

becomes
f(x") xr? - 2xn - 5
Xn =Xn— .., <= Xn—
- £ (x) Zyplo
With n = 1 we have
f(x1) X = 2% =5
X=X ———=2Xx, —
N ) 3%} — 2
5 22—-212) -5 5]
3027 —2 ’

Then with n = 2 we obtain

%3 —\2x5 ~ 5 _ @I =—2020):=5

=Xx; — = 2.1 ~ 2.0946
BTRT TR 32,17 — 2
It turns out that this third approximation x3 = 2.0946 is accurate to four decimal
places.
1
p
y=x3—2x —5/\
1.8 3 2.2
X2
L [/ —y=10x—21
-2

FIGURE 5



EXAMPLE 2 Use Newton’s method to find ¢/2 correct to eight decimal places.

SOLUTION First we observe that finding $2 is equivalent to finding the positive

solution of the equation
x*—2=0

so we take f(x) = x® — 2. Then f'(x) = 6x° and Formula 2 (Newton’s method)
becomes

f(xn) o x;? = 2

fe) e

If we choose x; = 1 as the initial approximation, then we obtain
x> = 1.16666667
x; =~ 1.12644368
x4 = 1.12249707
xs = 1.12246205
xe¢ = 1.12246205

Xn+1 = Xp

Since x5 and x¢ agree to eight decimal places, we conclude that
{2 = 1.12246205

to eight decimal places.
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If we have a function F whose derivative is the function f, then F is called an antideriva-
tive of f.

Definition A function F is called an antiderivative of f on an interval 7 if
F'(x) = f(x) for all xin /.

_ |
¢ ][mf = Floo= 37X

o PArre thow obhan 7

1| Theorem If F is an antiderivative of f on an interval /, then the most general
antiderivative of f on / is

F(x) + C

where C is an arbitrary constant.
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EXAMPLE 1 Find the most general antiderivative of each of the following functions.
(a) f(x) = sinx (b) f(x) = 1/x ©) fx)p=x%", Hz =]

B Antidifferentiation Formulas

As in Example 1, every differentiation formula, when read from right to left, gives rise to
an antidifferentiation formula. In Table 2 we list some particular antiderivatives. Each for-
mula in the table is true because the derivative of the function in the right column appears
in the left column. In particular, the first formula says that the antiderivative of a constant
times a function is the constant times the antiderivative of the function. The second for-
mula says that the antiderivative of a sum is the sum of the antiderivatives. (We use the
notation F'= f, G' = g.)

[2] Table of Antidifferentiation Formulas

Function Particular antiderivative Function Particular antiderivative
cf(x) cF(x) sin x —CoS X
f(x) + g(x) F(x) + G(x) sec’x tan x
n+1
X
x" (n# —1) sec x tan x sec x
n+1
| 1 o
o In |x| —— Sin lx
X \/ 1 — x2
. . 1 -
e’ e’ = taf: 2%
1 + x°
, b* ’
b* cosh x sinh x
Inb
COS X sin x sinh x cosh x




EXAMPLE 2 Find all functions g such that

2x° — Jx

g'(x) = 4sin x +

X
SOLUTION We first rewrite the given function as follows:
2x° 1
g'(x) = 4sinx + a —\/;=4sinx+2x4——
X X N

Thus we want to find an antiderivative of
g'(x) = 4sinx + 2x* — x71/2

Using the formulas in Table 2 together with Theorem 1, we obtain

5 xl/2

g(x)=4(—cosx)+2x?—T+C
2

= —4cosx+3x°—2/x + C

EXAMPLE 3 Find fif f'(x) = * + 20(1 + x?) ' and £(0) = —2.

SOLUTION The general antiderivative of
20

1 + x?

flx) =e"+

is f(x) =e*+ 20tan"'x + C

To determine C we use the fact that f(0) = —2:
f(0)=¢"+20tan”' 0+ C= -2

Thus we have C = —2 — 1 = —3, so the particular solution is

f(x) =e*+20tan"'x — 3



EXAMPLE 4 Find fif f"(x) = 12x> + 6x — 4, f(0) = 4, and f(1) = 1.
SOLUTION The general antiderivative of f”(x) = 12x> + 6x — 41is

3 2

fH=12>—+6=
3 P

—4x+C=4x>+3x*—4x+ C

Using the antidifferentiation rules once more, we find that

4 3

X X X
= — + — —
fx) =4 1 2 3 4 >

[S%]

+Cx+D=x*+x>—-2x>*+Cx+D

To determine C and D we use the given conditions that f(0) = 4 and f(1) = 1. Since
f(0) =0+ D = 4, we have D = 4. Since

f)y=1+1-2+C+4=1
we have C = —3. Therefore the required function 1s

f)=x*+x*—-2x*-3x+4 o
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EXAMPLE 6 A particle moves in a straight line and has acceleration given by
a(t) = 61 + 4. Its initial velocity is v(0) = —6 cm/s and its initial displacement is
5(0) = 9 cm. Find its position function s(7).

SOLUTION Since v'(t) = a(t) = 6t + 4, antidifferentiation gives

2

t
v(t)=6?+4t+C=3tz+4t+C

Note that #(0) = C. But we are given that »(0) = —6, so C = —6 and
v(f) =3t + 4t — 6

Since v(f) = 5'(7), s is the antiderivative of v:

t3 t2
s(t)=3?+4?—6t+D=t3+2t2—6t+D
This gives s(0) = D. We are given that s(0) = 9, so D = 9 and the required position
function is
s =>+2t>—6t+9



An object near the surface of the earth is subject to a gravitational force that produces
a downward acceleration denoted by g. For motion close to the ground we may assume
that g is constant, its value being about 9.8 m/s* (or 32 ft/s*). It is remarkable that from
the single fact that the acceleration due to gravity is constant, we can use calculus to
deduce the position and velocity of any object moving under the force of gravity, as
illustrated in the next example.

EXAMPLE 7 A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff,
432 ft above the ground. Find its height above the ground 7 seconds later. When does it
reach its maximum height? When does it hit the ground?

SOLUTION The motion is vertical and we choose the positive direction to be upward.
At time 7 the distance above the ground is s(¢) and the velocity v(¢) is decreasing.
Therefore the acceleration must be negative and we have

H=—=-32
alt) = — 3

Taking antiderivatives, we have
v(t) = =32t + C

To determine C we use the given information that v(0) = 48. This gives 48 = 0 + C, so
v() = —32¢t + 48

The maximum height is reached when »(7) = 0, that is, after 1.5 seconds. Since
s'(t) = v(r), we antidifferentiate again and obtain

s(f) = —161> + 48t + D
Using the fact that s(0) = 432, we have 432 = 0 + D and so
s(f) = —161> + 48t + 432

The expression for s(z) is valid until the ball hits the ground. This happens when
s(t) = 0, that is, when
—161* + 48t + 432 =0

or, equivalently, t?—3t—-27=0

Using the quadratic formula to solve this equation, we get

t=3i3\/ﬁ
2

We reject the solution with the minus sign because it gives a negative value for 7. There-
fore the ball hits the ground after 3(1 + 4/13)/2 = 6.9 seconds. [



onsider the following problem: a farmer with 750 ft of fenc-
ing wants to enclose a rectangular area and then divide it into
four pens with fencing parallel to one side of the rectangle.

What is the largest possible total area of the four pens?

(a) Draw several diagrams illustrating the situation, some
with shallow, wide pens and some with deep, narrow
pens. Find the total areas of these configurations. Does it
appear that there 1s a maximum area? If so, estimate it.

(b) Draw a diagram illustrating the general situation.
Introduce notation and label the diagram with your
symbols.

(c) Write an expression for the total area.

(d) Use the given information to write an equation that
relates the variables.

(e) Use part (d) to write the total area as a function of one
variable.

(f) Finish solving the problem and compare the answer with
your estimate in part (a).

x
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