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[3] The Extreme Value Theorem If f is continuous on a closed interval [a, b],
then f attains an absolute maximum value f(c) and an absolute minimum value
f(d) at some numbers ¢ and d in [a, b].

(4] Fermat’s Theorem If f has a local maximum or minimum at ¢, and if f(c)
exists, then f'(c) = 0.

@ Definition A critical number of a function f is a number ¢ in the domain of
f such that either f'(c) = 0 or f'(c) does not exist.

The Closed Interval Method To find the absolute maximum and minimum
values of a continuous function f on a closed interval [a, b]:

1. Find the values of f at the critical numbers of f in (a, b).
2. Find the values of f at the endpoints of the interval.

3. The largest of the values from Steps 1 and 2 is the absolute maximum value;
the smallest of these values is the absolute minimum value.
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The Mean Value Theorem Let f be a function that satisfies the following
hypotheses:

1. f is continuous on the closed interval [a, b].
2. f is differentiable on the open interval (a, b).
Then there is a number ¢ in (a, b) such that
o )~ f@
@ fie) = H2 L4
—a
or, equivalently,

[2] f(b) = f(a) = f'()b — a)
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Increasing/Decreasing Test Lot [aV]) he ou dutent nt. f > defleeei ik
(a) If f'(x) > 0 on an interval, then f is increasing on that interval.

(b) If f'(x) < 0 on an interval, then f is decreasing on that interval.
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EXAMPLE 1 Find where the function f(x) = 3x* — 4x’ — 12x*> + 5 is increasing

and where it is decreasing.

f'(x) < 0for0 < x < 2,s0 f is decreasing on (0, 2). (It would also be true to say

that f is decreasing on the closed interval [0, 2].)

\/ / Interval 12x x—=2 x 41 f'(x) i
-2 N 3 x< -1 - - - decreasing on (—=, —1)
-1<x<0 - - + + increasing on (—1, 0)
0<x<2 + - + - decreasing on (0, 2)
I\ b o i) - + - + increasing on (2, =)
-30
FIGURE 3 The graph of f shown in Figure 3 confirms the information in the chart.
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function f.

then f has no local maximum or minimum at c.

The First Derivative Test Suppose that c is a critical number of a continuous

(a) If f' changes from positive to negative at ¢, then f has a local maximum at c.
(b) If f’ changes from negative to positive at ¢, then f has a local minimum at c.

(c) If f' is positive to the left and right of ¢, or negative to the left and right of ¢,

function f.

then f has no local maximum or minimum at c.

The First Derivative Test Suppose that c is a critical number of a continuous

(a) If f' changes from positive to negative at ¢, then f has a local maximum at c.
(b) If f' changes from negative to positive at ¢, then f has a local minimum at c.

(c) If f' is positive to the left and right of ¢, or negative to the left and right of ¢,
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EXAMPLE 2 Find the local minimum and maximum values of the function f in
Example 1.
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SECTION 4.3 What Derivatives Tell Us about the Shape of a Graph 299

SOLUTION From the chart in the solution to Example 1 we see that f'(x) changes
from negative to positive at —1, so f(—1) = 0 is a local minimum value by the First

Derivative Test. Similarly, /' changes from negative to positive at 2, so f(2) = —27 is
also a local minimum value. As noted previously, f(0) = 5 is a local maximum value
because f'(x) changes from positive to negative at 0. o

EXAMPLE 3 Find the local maximum and minimum values of the function
g(x) =x+ 2sinx 0<x<2mw
SOLUTION As in Example 1, we start by finding the critical numbers. The derivative is:
g'(x) =1+ 2cosx

so g'(x) = 0 when cos x = —é—. The solutions of this equation are 27r/3 and 4/3.
Because g is differentiable everywhere, the only critical numbers are 27r/3 and 47/3.
We split the domain into intervals according to the critical numbers. Within each
interval, g'(x) is either always positive or always negative and so we analyze g in the
following chart.

Interval g(x) =1+ 2cosx g
0<x<2m/3 = increasing on (0, 277/3)
2m/3 < x < 4w/3 - decreasing on (277/3, 47/3)

4m/3 < x < 2 + increasing on (41/3, 21r)
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Figure 6 shows the graphs of two increasing functions on (a, b). Both graphs join point .
to point B but they look different because they bend in different directions. How ca
we distinguish between these two types of behavior?
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(a) Concave upward (b) Concave downward

Definition If the graph of f lies above all of its tangents on an interval 7, then f
is called concave upward on /. If the graph of f lies below all of its tangents on 7,
then f is called concave downward on /.
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Concavity Test
(a) If f"(x) > 0 on an interval /, then the graph of f is concave upward on /.

(b) If f"(x) < 0 on an interval I, then the graph of f is concave downward on /.

Definition A point P on a curve y = f(x) is called an inflection point if f is con-
tinuous there and the curve changes from concave upward to concave downward
or from concave downward to concave upward at P.
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The Second Derivative Test Suppose f” is continuous near c.
(a) If f'(c) = 0and f"(c) > 0, then f has a local minimum at c.
(b) If f'(c) = 0and f"(c) < 0, then f has a local maximum at ¢
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FIGURE 11

f"(c) > 0, fis concave upward



EXAMPLE 6 Discuss the curve y = x* — 4x’ with respect to concavity, points of
inflection, and local maxima and minima.

jﬁ(x)= x - Y’
]C/“‘): do’= 125" = 4nt(x=3)
]C”(fx): [foL, LY x = [Zx(’X—L)
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EXAMPLE 7 Sketch the graph of the function f(x) = x*3(6 — x)'/%.
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B L'Hospital’s Rule

We now introduce a systematic method, known as [’Hospital’s Rule, for the evaluation of
indeterminate forms of type % or type .

L'Hospital’s Rule Suppose f and g are differentiable and g'(x) # 0 on an open
interval / that contains a (except possibly at a). Suppose that

lim f(x) =0 and lim g(x) = 0

xX—a X—a

or that lim f(x) = *oo and lim g(x) = *o

(ln other words, we have an indeterminate form of type 0 Or . ) Then
. f(x) S
lim ——— = lim
x—a g(x)  x—a g'(x)

if the limit on the right side exists (or 1s % or —®).
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NOTE 3 For the special case in which f(a) = g(a) = 0, f' and g’ are continuous, and
g'(a) # 0, itis easy to see why I’Hospital’s Rule is true. In fact, using the alternative form
of the definition of a derivative (2.7.5), we have

f(x) — f(a)

, ; lim
im LW _ fl@) e x—a
x—a g'(x) g'(a) fis g(x) — g(a)
x—a X — d
f(x) — f(a)
— fy——e 2
x—a g(x) — g(a)
X — d
fx) = f(a) Jx)

= |lim = lim

[because f(a) = g(a) = 0]
r—a g(x) — gla) x—a g(x) g

It is more difficult to prove the general version of I’Hospital’s Rule. See Appendix F.
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EXAMPLE 3 Calculate 11m ——

e \/_

SOLUTION Since In x — % and y/x — % as x — %, I’Hospital’s Rule applies:

In x , 1/x , 1/x

Notice that the limit on the right side is now indeterminate of type ?—) But instead of
applying I’Hospital’s Rule a second time as we did in Example 2, we simplify the
expression and see that a second application is unnecessary:

In x 1/ ) 2
Iim —= lim ——————

= li
e E e 1fVE) e

tan x — x

EXAMPLE 4 Find lirr(l) —— . (See Exercise 2.2.48.)
x— X
SOLUTION Noting that both tan x — x — 0 and x> — 0 as x — 0, we use ’'Hospital’s
Rule:
. tanx — x - osecqx — 1
lim ———=lim ————
x—0 X x—0 3x“

Since the limit on the right side is still indeterminate of type % we apply I’Hospital’s
Rule again:

sec’x — 1 2 sec’x tan x
lim———=1lim —
x—0 3x“ x—0 6x

Because lim,_.( sec’x = 1, we simplify the calculation by writing

_ 2sec’x tan x 1 __ifamx 1 tan x
11m—=—11m sec’x + lim — lim
x—0 6x 3 x x—0 Xx 3 x>0 x

We can evaluate this last limit either by using 1’Hospital’s Rule a third time or by
writing tan x as (sin x)/(cos x) and making use of our knowledge of trigonometric
limits. Putting together all the steps, we get

2 2
. tanx — x .oosecx — 1 . 2sec’xtanx
im— =l ————
x—0 X x—0 3x”° x—0 6x




EXAMPLE 7 Compute lim( SR >

x—>1+ \ In x x—1

SOLUTION First notice that 1/(In x) > and 1/(x — 1) — ©as x — 1", so the limit
is indeterminate of type % — . Here we can start with a common denominator:

_ | | oo = L=Inx
lim — = lim
x—=1*t \ Inx =1 =1t (x = 1) Inx

Both numerator and denominator have a limit of 0, so I’Hospital’s Rule applies, giving

1__

o x—1—1Inx ) X ) x—1
lim = |lim = |im
=1t (x — 1) Inx x—1+ 1 =1t x =1+ xlnx

x—1)-+—+1Inx

X

Again we have an indeterminate limit of type %, so we apply I’Hospital’s Rule a second
time:
=1 1

lim = lim
x=>1tx— 1+ xInx x—1+




Tpe 0o

. ’ . L_ ) 5 L_ . B
— , ne— . — —
Iim x 0 Iim o© and lim x Im x=0
x—0*t x—0t x x—0t X x—0t
| 1 1
Im x =0, lim — = ® and hmx‘—2=l1m—=oo
x—0t x—0t x x—07F x x—0t x
. . 1 . .
—q 5 — o m—— —
Iim x=0 Iim o and Iim x lim 1 |
x—0*t x—0t x x—0t X x—0t

This kind of limit is called an indeterminate form of type 0 - . We can deal with it by
writing the product fg as a quotient:

_ & _ 9
9= ° Ty

This converts the given limit into an indeterminate form of type % or % so that we can use
I’Hospital’s Rule.

EXAMPLE 6 Evaluate ‘lir¥)1+ x1n x.

SOLUTION The given limit is indeterminate because, as x — 07, the first factor (x)

approaches 0 while the second factor (In x) approaches —o. Writing x = 1/(1/x), we

have 1/x — o as x — 07, so I’Hospital’s Rule gives
In x . 1/x

Xll%l+ xin = "‘ll)rg+ I/—x = XILIBL e = _}H{,L (=x)=0




B Indeterminate Powers (Types 0°, «°, 1)

Several indeterminate forms arise from the limit

lim [ f(x)]”

1. lim f(x) =0 and lim g(x) = 0 type 0°
2. lim f(x) = and lim g(x) = 0 type

3. lim f(x) =1 and lim g(x) = oo type 17

x—a x—a
Each of these three cases can be treated either by taking the natural logarithm:
let y=[f(x)]", then Iny = g(x)Inf(x)
or by using Formula 1.5.10 to write the function as an exponential:
[ £(x)]W = o) inf

(Recall that both of these methods were used in differentiating such functions.) In either
method we are led to the indeterminate product g(x) In f(x), which is of type 0 - o°.

EXAMPLE9 Calculate lim (1 + sin 4x)",

SOLUTION First notice that as x — 0", we have 1 + sin 4x — 1 and cot x — o, so the
given limit is indeterminate (type 17). Let

y = (1 + sin 4x)**

In(1 + sin4x)

Then Iny = In[(1 + sin 4x)**] = cot x In(1 + sin4x) =
tan x
so I’Hospital’s Rule gives
4 cos 4x
) . In(1 + sin4x) _ 1 + sin4x
lim Iny = lim = lim ———=4
x—0+ x—0F tan x x—>0+ Secx

So far we have computed the limit of In y, but what we want is the limit of y. To find

Iny.

this we use the fact that y = ¢™:

lim (1 + sin4x)**= lim y = lim " = ¢e* O
x—07F x—07F x—0t



EXAMPLE 10 Find _lirBl+ X%

SOLUTION Notice that this limit is indeterminate since 0* = 0 for any x > () but

x" =1 for any x # 0. (Recall that 0° is undefined.) We could proceed as in Example 9
or by writing the function as an exponential:

xlnx

x = (e") =e¢
In Example 6 we used I’Hospital’s Rule to show that

Im xInx =20

x—0*t

Therefore lim x*= lim e*®™*=¢=1

x—07* x—0t



