Invene derivative

The: Let
$$f$$
 be a one-to-one, differentiable function, the f^{-1} is also differentiable, and
$$\left(f^{-1}\right)'(x) = \frac{1}{f'(f^{-1}(x))}$$

$$y = f'(x) \Leftrightarrow f(y) = x$$

$$\downarrow implicit differentiation$$

$$f'(y) \cdot y' = 1$$

$$y' = \frac{1}{f(y)} = \frac{1}{f(f(n))}$$

$$e_{-}$$
: $f(x) = e^{x}$, $f^{-1}(x) = \ln x$

$$(\ln x)' = \frac{1}{f'(f'(x))} = \frac{1}{e^{f'(x)}} = \frac{1}{e^{\ln x}} = \frac{1}{x}$$

Derivatives of logarithmic functions

Because the logarithmic function $y = \log_b x$ is the inverse of the exponential function $y = b^x$, which we know is differentiable from Section 3.1, it follows that the logarithmic function is also differentiable. We now state and prove the formula for the derivative of a logarithmic function.

$$\frac{d}{dx}(\log_b x) = \frac{1}{x \ln b}$$

PROOF Let $y = \log_b x$. Then

$$b^y = x$$

Differentiating this equation implicitly with respect to x, and using Formula 3.4.5, we get

$$(b^y \ln b) \frac{dy}{dx} = 1$$

and so

$$\frac{dy}{dx} = \frac{1}{b^y \ln b} = \frac{1}{x \ln b}$$

If we put b = e in Formula 1, then the factor $\ln b$ on the right side becomes $\ln e = 1$ and we get the formula for the derivative of the natural logarithmic function $\log_e x = \ln x$:

2

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

By comparing Formulas 1 and 2, we see one of the main reasons that natural logarithms (logarithms with base e) are used in calculus: the differentiation formula is simplest when b = e because $\ln e = 1$.

EXAMPLE 1 Differentiate $y = \ln(x^3 + 1)$.

SOLUTION To use the Chain Rule, we let $u = x^3 + 1$. Then $y = \ln u$, so

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = \frac{1}{u}\frac{du}{dx} = \frac{1}{x^3 + 1}(3x^2) = \frac{3x^2}{x^3 + 1}$$

EXAMPLE 2 Find $\frac{d}{dx} \ln(\sin x)$.

SOLUTION Using (3), we have

$$\frac{d}{dx}\ln(\sin x) = \frac{1}{\sin x}\frac{d}{dx}(\sin x) = \frac{1}{\sin x}\cos x = \cot x$$

EXAMPLE 6 Find f'(x) if $f(x) = \ln |x|$.

SOLUTION Since

$$f(x) = \begin{cases} \ln x & \text{if } x > 0\\ \ln(-x) & \text{if } x < 0 \end{cases}$$

it follows that

$$f'(x) = \begin{cases} \frac{1}{x} & \text{if } x > 0\\ \frac{1}{-x} (-1) = \frac{1}{x} & \text{if } x < 0 \end{cases}$$

Thus f'(x) = 1/x for all $x \neq 0$.

The result of Example 6 is worth remembering:

4

$$\frac{d}{dx}\ln|x| = \frac{1}{x}$$

EXAMPLE 7 Differentiate
$$y = \frac{x^{3/4} \sqrt{x^2 + 1}}{(3x + 2)^5}$$
.

SOLUTION We take logarithms of both sides of the equation and use the Laws of Logarithms to simplify:

$$\ln y = \frac{3}{4} \ln x + \frac{1}{2} \ln(x^2 + 1) - 5 \ln(3x + 2)$$

Differentiating implicitly with respect to *x* gives

$$\frac{1}{y}\frac{dy}{dx} = \frac{3}{4} \cdot \frac{1}{x} + \frac{1}{2} \cdot \frac{2x}{x^2 + 1} - 5 \cdot \frac{3}{3x + 2}$$

Solving for dy/dx, we get

$$\frac{dy}{dx} = y \left(\frac{3}{4x} + \frac{x}{x^2 + 1} - \frac{15}{3x + 2} \right)$$

Because we have an explicit expression for y, we can substitute and write

$$\frac{dy}{dx} = \frac{x^{3/4}\sqrt{x^2 + 1}}{(3x + 2)^5} \left(\frac{3}{4x} + \frac{x}{x^2 + 1} - \frac{15}{3x + 2} \right)$$

Steps in Logarithmic Differentiation

- 1. Take natural logarithms of both sides of an equation y = f(x) and use the Laws of Logarithms to expand the expression.
- **2.** Differentiate implicitly with respect to x.
- **3.** Solve the resulting equation for y' and replace y by f(x).

PROOF OF THE POWER RULE (GENERAL VERSION) Let $y = x^n$ and use logarithmic differentiation:

$$\ln|y| = \ln|x|^n = n \ln|x| \qquad x \neq 0$$

Therefore

$$\frac{y'}{y} = \frac{n}{x}$$

Hence

$$y' = n \frac{y}{x} = n \frac{x^n}{x} = nx^{n-1}$$

EXAMPLE 8 Differentiate $y = x^{\sqrt{x}}$.

SOLUTION 1 Since both the base and the exponent are variable, we use logarithmic differentiation:

$$\ln y = \ln x^{\sqrt{x}} = \sqrt{x} \ln x$$

$$\frac{y'}{y} = \sqrt{x} \cdot \frac{1}{x} + (\ln x) \frac{1}{2\sqrt{x}}$$

$$y' = y \left(\frac{1}{\sqrt{x}} + \frac{\ln x}{2\sqrt{x}}\right) = x^{\sqrt{x}} \left(\frac{2 + \ln x}{2\sqrt{x}}\right)$$

SOLUTION 2 Another method is to use Equation 1.5.10 to write $x^{\sqrt{x}} = e^{\sqrt{x} \ln x}$:

$$\frac{d}{dx}(x^{\sqrt{x}}) = \frac{d}{dx}(e^{\sqrt{x}\ln x}) = e^{\sqrt{x}\ln x}\frac{d}{dx}(\sqrt{x}\ln x)$$
$$= x^{\sqrt{x}}\left(\frac{2 + \ln x}{2\sqrt{x}}\right) \qquad \text{(as in Solution 1)}$$

The Number e as a Limit

We have shown that if $f(x) = \ln x$, then f'(x) = 1/x. Thus f'(1) = 1. We now use this fact to express the number e as a limit.

From the definition of a derivative as a limit, we have

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$
$$= \lim_{x \to 0} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x)$$
$$= \lim_{x \to 0} \ln(1+x)^{1/x}$$

Because f'(1) = 1, we have

$$\lim_{x \to 0} \ln(1 + x)^{1/x} = 1$$

Then, by Theorem 2.5.8 and the continuity of the exponential function, we have

$$e = e^{1} = e^{\lim_{x \to 0} \ln(1+x)^{1/x}} = \lim_{x \to 0} e^{\ln(1+x)^{1/x}} = \lim_{x \to 0} (1+x)^{1/x}$$

$$e = \lim_{x \to 0} (1 + x)^{1/x}$$

Formula 5 is illustrated by the graph of the function $y = (1 + x)^{1/x}$ in Figure 4 and a table of values for small values of x. This illustrates the fact that, correct to seven decimal places,

$$e \approx 2.7182818$$

If we put n=1/x in Formula 5, then $n\to\infty$ as $x\to0^+$ and so an alternative expression for e is

 $e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$

$$\int_{-\infty}^{\infty} (x) = \sin x : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \longrightarrow \left[-1, 1 \right]$$

$$\int_{-1}^{-1} (x) = \sin^{4} x : \left(-1, 1 \right) \longrightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

$$\left(Sin^{2}x\right)' = \frac{1}{\cos(f^{2}(x))} = \frac{1}{\cos(\sin^{2}x)}$$

Notice that:
$$\left(\sin\left(0\right)\right)^{2} + \left(\cos\left(0\right)\right)^{2} = 1$$

$$\int 0 = \sin^{2} x$$

$$\chi^2 + \omega \cdot \left(\sin^4 x\right)^2 = 1$$

$$=) \qquad Cos \left(Sin^{-1} x \right) = \sqrt{1-x^{-1}} > 0 \quad when \quad x \in \left(-1,1 \right)$$

$$\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

$$\Rightarrow \left(\widehat{Sin'x}\right)' = \frac{1}{\sqrt{1-x^2}}$$

Recall the definition of the arcsine function:

$$y = \sin^{-1} x$$
 means $\sin y = x$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Differentiating $\sin y = x$ implicitly with respect to x, we obtain

$$\cos y \frac{dy}{dx} = 1$$
 or $\frac{dy}{dx} = \frac{1}{\cos y}$

Now $\cos y \ge 0$ because $-\pi/2 \le y \le \pi/2$, so

$$\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$$
 $(\cos^2 y + \sin^2 y = 1)$

Therefore

$$\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}$$

$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

Derivatives of Inverse Trigonometric Functions

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1 + x^2} \qquad \frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1 + x^2}$$

EXAMPLE 9 Differentiate (a) $y = \frac{1}{\sin^{-1}x}$ and (b) $f(x) = x \arctan \sqrt{x}$.

SOLUTION

(a)
$$\frac{dy}{dx} = \frac{d}{dx} (\sin^{-1}x)^{-1} = -(\sin^{-1}x)^{-2} \frac{d}{dx} (\sin^{-1}x)$$
$$= -\frac{1}{(\sin^{-1}x)^2 \sqrt{1 - x^2}}$$
(b)
$$f'(x) = x \frac{1}{1 + (\sqrt{x})^2} (\frac{1}{2} x^{-1/2}) + \arctan \sqrt{x}$$
$$= \frac{\sqrt{x}}{2(1 + x)} + \arctan \sqrt{x}$$

Linear approximation

The idea of derivative: instantaneous rate of charge
Using lines to approximate complicated functions

FIGURE 1

It might be easy to calculate a value f(a) of a function, but difficult (or even impossible) to compute nearby values of f. So we settle for the easily computed values of the linear function L whose graph is the tangent line of f at (a, f(a)). (See Figure 1.)

In other words, we use the tangent line at (a, f(a)) as an approximation to the curve y = f(x) when x is near a. An equation of this tangent line is

$$y = f(a) + f'(a)(x - a)$$

The linear function whose graph is this tangent line, that is,

$$L(x) = f(a) + f'(a)(x - a)$$

is called the **linearization** of f at a. The approximation $f(x) \approx L(x)$ or

$$f(x) \approx f(a) + f'(a)(x - a)$$

is called the **linear approximation** or **tangent line approximation** of f at a.

EXAMPLE 1 Find the linearization of the function $f(x) = \sqrt{x+3}$ at a=1 and use it to approximate the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$. Are these approximations overestimates?

SOLUTION The derivative of $f(x) = (x + 3)^{1/2}$ is

$$f'(x) = \frac{1}{2}(x+3)^{-1/2} = \frac{1}{2\sqrt{x+3}}$$

and so we have f(1) = 2 and $f'(1) = \frac{1}{4}$. Putting these values into Equation 1, we see

that the linearization is

$$L(x) = f(1) + f'(1)(x - 1) = 2 + \frac{1}{4}(x - 1) = \frac{7}{4} + \frac{x}{4}$$

The corresponding linear approximation (2) is

$$\sqrt{x+3} \approx \frac{7}{4} + \frac{x}{4}$$
 (when x is near 1)

In particular, we have

$$\sqrt{3.98} \approx \frac{7}{4} + \frac{0.98}{4} = 1.995$$
 and $\sqrt{4.05} \approx \frac{7}{4} + \frac{1.05}{4} = 2.0125$

The linear approximation is illustrated in Figure 2. We see that, indeed, the tangent line approximation is a good approximation to the given function when *x* is near l. We also see that our approximations are overestimates because the tangent line lies above the curve.

Of course, a calculator could give us approximations for $\sqrt{3.98}$ and $\sqrt{4.05}$, but the linear approximation gives an approximation *over an entire interval*.

Review:

limit: lim fix = L

a=+00/-00 = horizontal asympotote

L=+00/- a => vertical asympotote

Rules: Courtine authèle:

 $C \cdot \int_{X}$

Sun/ dottem

f ± z

p ~ duit

f. J

quo-tient

Sequeeze this how & fix > Egix)

continuous functions: Det: lin fix= fa)

Rasic examples: Polynomials

· Retional Amotion

. Algebraic functions

· Trigonometric Juns tragonometric

· exponential / logarithmic

Pravic properdes: . C. f

· ftg

· f.g

- <u>f</u>

Practice test

1. (1)
$$\lim_{x \to a} f(x) = +\infty$$

the values of fix) can be as longe as you nant if you restrict x to a sufficiently small internal amening a

the values of fixe can be as close to (a)
you want it the carriable is sufficiently loge

2. (1) continuous functions

$$\lim_{t \to \infty} \frac{\sin(t)^2}{t} = \lim_{t \to \infty} \frac{\sin t}{t} = 0.1 = 0$$

$$\int_{1}^{1} (\chi) = \frac{3}{1} \cdot \left(1 + 4^{-n}(x)\right)^{-\frac{3}{3}} \cdot \left(26c x\right)$$

4.
$$y = \sqrt{x \ln(x^4)} = \frac{1}{2} \ln x + \frac{1}{2} \ln (4 \ln x)$$

$$\frac{y'}{y} = \frac{1}{2x} + \frac{1}{2} \cdot \frac{1}{4 \ln x} \cdot \frac{4}{x}$$

$$= \frac{1}{2x} + \frac{1}{2x \ln x}$$

$$y' = \sqrt{x | (x^4)} \cdot \frac{|n \times + 1|}{2 \times |n \times}$$

$$f'(x) = \sqrt{x \ln(x^4)} \cdot \frac{\ln x + 1}{2 \times \ln x}$$

$$f'(x) = \frac{1}{2} \frac{1}{\sqrt{x \ln(x^4)}} \cdot \left(4 \cdot \left(\ln x + 1\right)\right)$$

$$= \frac{2(\ln x + 1)}{\sqrt{x \ln(x^4)}} = \frac{\ln x + 1}{\sqrt{x \ln x}}$$

5. (1)
$$2x + 4y + 4xy' + 2y \cdot y' = 0$$

 $x + 2y + 2xy' + y \cdot y' = 0$
 $y'(2x + y) = -(2y + x)$
 $y' = -\frac{x + 2y}{2x + y}$