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[1] Intuitive Definition of a Limit Suppose f(x) is defined when x is near the
number a. (This means that f is defined on some open interval that contains a,
except possibly at a itself.) Then we write

and say

lim f(x) =L

X—a

“the limit of f(x), as x approaches a, equals .”

if we can make the values of f(x) arbitrarily close to L (as close to L as we like)
by restricting x to be sufficiently close to a (on either side of a) but not equal to a.

sin x

X

*£1.0
*0.5
+0.4
£0:3
+0.2
*0.1
*0.05
*0.01
*0.005
+0.001

0.84147098
0.95885108
0.97354586
0.98506736
0.99334665
0.99833417
0.99958339
0.99998333
0.99999583
0.99999983

EXAMPLE 2 Guess the value of limU smx.
x—> X

SOLUTION The function f(x) = (sin x)/x is not defined when x = 0. Using a calcula-
tor (and remembering that, if x € R, sin x means the sine of the angle whose radian
measure is x), we construct a table of values correct to eight decimal places. From the
table at the left and the graph in Figure 4 we guess that

. sinx
lim -
x—0 X

This guess is in fact correct, as will be proved in Chapter 3 using a geometric
argument.

FIGURE 4
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] The Heaviside function H is defined by
1 0 if r<0
‘ H(r) =

1 ifr=0

0 t (This function is named after the electrical engineer Oliver Heaviside [1850-1925] and

can be used to describe an electric current that is switched on at time r = (.) Its graph is
FIGURE 5 shown in Figure 5.
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[2] Intuitive Definition of One-Sided Limits We write
lim f(x) =L

xX—a-

and say that the left-hand limit of f(x) as x approaches a [or the limit of f(x) as x

approaches a from the left] is equal to L if we can make the values of f(x) arbi-

trarily close to L by restricting x to be sufficiently close to a with x less than a.
We write

lim f(x) =L

X—>a

and say that the right-hand limit of f(x) as x approaches a [or the limit of f(x) as x
approaches a from the right] is equal to L if we can make the values of f(x) arbitrarily
close to L by restricting x to be sufficiently close to a with x greater than a.
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Notice that Definition 2 differs from Definition 1 only in that we require x to be less
than (or greater than) a. By comparing these definitions, we see that the following is true.

3] lim f(x) =L ifand only if lim f(x)=L and lim f(x) =L

x—a x—at
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E] Intuitive Definition of an Infinite Limit Let f be a function defined on
both sides of a, except possibly at a itself. Then

lim f(x) = ¢

means that the values of f(x) can be made arbitrarily large (as large as we please)
by taking x sufficiently close to a, but not equal to a.




5

Definition Let f be a function defined on both sides of a, except possibly at

a itself. Then

lim f(x) = —

X—a

means that the values of f(x) can be made arbitrarily large negative by taking x
sufficiently close to a, but not equal to a.

Vertil frymg et

[6] Definition The vertical line x = a is called a vertical asymptote of the
curve y = f(x) if at least one of the following statements is true:

lim /(x) = oo lim f(x) = = lim f(x) = =
lim f(x) = —o° lim f(x) = o lim_f(x) = —o

2x

x —

EXAMPLE 7 Does the curve y = have a vertical asymptote?

SOLUTION There is a potential vertical asymptote where the denominator is 0, that
is, at x = 3, so we investigate the one-sided limits there.

If x is close to 3 but larger than 3, then the denominator x — 3 is a small positive
number and 2x is close to 6. So the quotient 2x/(x — 3) is a large positive number.
[For instance, if x = 3.01 then 2x/(x — 3) = 6.02/0.01 = 602.] Thus, intuitively, we
see that

2x

lim = 0
=3t x — 3

Likewise, if x is close to 3 but smaller than 3, then x — 3 is a small negative number
but 2x is still a positive number (close to 6). So 2x/(x — 3) is a numerically large
negative number. Thus

) 2x
lim =
x—=3— x — 3

—00

The graph of the curve y = 2x/(x — 3) is given in Figure 13. According to Defini-
tion 6, the line x = 3 is a vertical asymptote. O
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Y EXAMPLE 8 Find the vertical asymptotes of f(x) = tan x.
SOLUTION Because
sin x
tanx =
COS X

there are potential vertical asymptotes where cos x = 0. In fact, since cos x — 0" as

snfm a0 5 /5 3m
2 T2 2 2
x— (m/2)" and cosx — 0~ as x — (7/2)", whereas sin x is positive (near 1) when x
is near /2, we have
FIGURE 14 lim tanx = % and lim tanx = —%
x—(m/2) x—(m/2)*
y = tan x
This shows that the line x = /2 is a vertical asymptote. Similar reasoning shows
Y that the lines x = 7/2 + nr, where n is an integer, are all vertical asymptotes of
f(x) = tan x. The graph in Figure 14 confirms this. o
y=Inx
D AN
JO G ( \‘k\’\ i
4 that the lines x = 7r/2 + nir, where n 1s an nteger, are all vertical asymptotes ot
f(x) = tanx. The graph in Figure 14 confirms this. |
y=Inx
Another example of a function whose graph has a vertical asymptote is the natural
9ot * logarithmic function y = Inx. From Figure 15 we see that
lim Inx = —%
x—0+
FIGURE 15
and so the line x = 0 (the y-axis) is a vertical asymptote. In fact, the same is true for
y = log, x provided that » > 1. (See Figures 1.5.11 and 1.5.12.)

The y-axis is a vertical asymptote of
the natural logarithmic function.
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Limit Laws Suppose that ¢ is a constant and the limits

lim f(x) and lim g(x)

4. 1im [£()g(9] = lim /() - lim g(x)

£(%) lim f(x)

exist. Then

1. lim [f(x) + g(x)] = 11_r)n f(x) + li_I)Il g(x) Sum Law
2. lim [f(x) — g(x)] = lim f(x) — lim g(x) Difference Law
3. lim [¢f(x)] = ¢ lim f(x) Constant Multiple Law

Product Law

5. lim == if lim g(x) # 0 Quotient Law
e glx)  limg(x)
Power Law 6. lim [f(x)]" = [lim f (x)]" where 7 is a positive integer

Root Law 7. lim f(x) =] }1_{1117 f(x) where 7 is a positive integer

[If n is even, we assume that lim f(x) > 0.]

xX—a

8. limc=c¢c 9. lim x =a

X—a Xx—a

10. lim x" = a" where 7 1s a positive integer

X—a

11. lim {/x = {/a  where n is a positive integer

X—a

(If n 1s even, we assume that a > 0.)




EXAMPLE 2 Evaluate the following limits and justify each step.

4+ 2 — 1
@) lim (2x* = 3x + 4) ©) lim

COM?V\T,;\,:) L\Ml“(,
LD ;\/‘e/llk. gv\\4€’b|-f/l/\‘b:’0\/\

Direct Substitution Property If f is a polynomial or a rational function and a is
in the domain of f, then

lim /(x) = f(a)

TOW\?evut [\ ne /)mly(ﬁw'- f(X)TXL Gt X = |

. Coxt =1
EXAMPLE 3 Find lim

x—1 _x—l'

SOLUTION Let f(x) = (x* — 1)/(x — 1). We can’t find the limit by substituting x = 1
because f(1) isn’t defined. Nor can we apply the Quotient Law, because the limit of
the denominator is 0. Instead, we need to do some preliminary algebra. We factor the
numerator as a difference of squares:

x2—1 =(x—l)(x+l)

e 1 % — 1

The numerator and denominator have a common factor of x — 1. When we take the

limit as x approaches 1, we have x # 1 and so x — 1 # (. Therefore we can cancel the

common factor, x — 1, and then compute the limit by direct substitution as follows:
x2—1 x—Dx+1)

= lim
x—1 x — 1 x—1 x— 1

=lim(x+ )=1+1=2

The limit in this example arose in Example 2.1.1 in finding the tangent to the parabola
y = x* at the point (1, 1). )
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EXAMPLE 5 Evaluate lim G~ 9

h—0 h

SOLUTION If we define

then, as in Example 3, we can’t compute lim,_.o F(h) by letting 2 = 0 because F(0) is
undefined. But if we simplify F(h) algebraically, we find that

(O+6h+h’)—9 6h+h’

F(h) = P !

_ Mo =

=6+ h
h

(Recall that we consider only 2 # 0 when letting / approach 0.) Thus

G+hP—-9 -
T an O ASe -
2 + —
EXAMPLE 6 Find lim Vi 1’9 5.
1— 3

SOLUTION We can’t apply the Quotient Law immediately because the limit of the
denominator is 0. Here the preliminary algebra consists of rationalizing the numerator:

. WiEF9 —13 . a9 —3 wtt+9 +3
lim > = i 3 S —
t—0 t t—0 t \/tz +9 + 3
, t+9 -9
= lim
=0 (2 + 9 + 3)
t2
=1
=0 (V2 +9 + 3)
li 1
= lim
=0 /t2+9 + 3
1

\/lirr(% (> +9) +3

34+3

(Here we use several properties
of limits: 5, 1, 7, 8, 10.)

=
6



9 Th squeeze tha
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2| Theorem If f(x) < g(x) when x is near a (except possibly at @) and the limits
of f and g both exist as x approaches a, then

lim £(x) < lim g(x

X—a

3| The Squeeze Theorem If f(x) < g(x) < h(x) when x is near a (except

possibly at a) and
lim f(x) = lim A(x) = L
then lim g(x) = L

L ool S’anf/{, /71/\‘(', vcp/ OU{/]Lm/ !

0,_-1, EXAMPLE 11 Show that }gr}) x?sin % =0.

# SOLUTION First note that we cannot rewrite the limit as the product of the
limits lim, .o x? and lim, ., sin(1/x) because lim, ., sin(1/x) does not exist (see
Example 2.2.5).

We can find the limit by using the Squeeze Theorem. To apply the Squeeze Theorem
we need to find a function f smaller than g(x) = x* sin(1/x) and a function & bigger
than g such that both f(x) and A(x) approach 0 as x — 0. To do this we use our knowl-
edge of the sine function. Because the sine of any number lies between —1 and 1, we
can write

1
(4] —-1<sin—=<1
X

Any inequality remains true when multiplied by a positive number. We know that
x? = 0 for all x and so, multiplying each side of the inequalities in (4) by x?, we get

—x2 < x%sin — < x?
X

as illustrated by Figure 8. We know that

lin})x2 =0 and lin%) (=x*)=0
Taking f(x) = —x?, g(x) = x*sin(1/x), and h(x) = x* in the Squeeze Theorem, we
obtain
o, ]
lim x“sin —= 0 0O

x—0 X
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[2] Precise Definition of a Limit Let f be a function defined on some open
interval that contains the number a, except possibly at a itself. Then we say that
the limit of f(x) as x approaches a is L, and we write

lim f(x) = L
(gn, ew/; m 2
if for every number & > W 0 such that
if 0<|x—al<$é then | f(x) — Ll <e
| /.

Ol e — —— ~— |- >
+

EXAMPLE 2 Prove that lim (4x — 5) = 7.

x—3




B One-Sided Limits

The intuitive definitions of one-sided limits that were given in Section 2.2 can be pre-
cisely reformulated as follows.

[3] Precise Definition of Left-Hand Limit
lim f(x) =L

xX—a-

if for every number £ > 0 there is a number & > 0 such that

if a—8<x<a  then L FO)y— I & &

[4] Precise Definition of Right-Hand Limit
lim f(x) =L

X—>a
if for every number & > () there is a number & > (0 such that

if a<x<a+$8  then |f(x) — L| <e

@ Precise Definition of an Infinite Limit Let f be a function defined on some
open interval that contains the number a, except possibly at a itself. Then

lim f(x) = «

X—a
means that for every positive number M there is a positive number & such that

if 0<|x—a|<& then f(x)>M
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B Continuity of a Function

We noticed in Section 2.3 that the limit of a function as x approaches a can often be
found simply by calculating the value of the function at a. Functions having this property
are called continuous at a. We will see that the mathematical definition of continuity cor-
responds closely with the meaning of the word continuity in everyday language. (A con-
tinuous process is one that takes place without interruption.)

|I| Definition A function f is continuous at a number a if

lim f(x) = f(a)

X—>a

Notice that Definition | implicitly requires three things if f is continuous at a:

1. f(a) is defined (that is, a is in the domain of f)

2. lim f(x) exists

3. lim £ = f(a)

If f is defined near a (in other words, f is defined on an open interval containing a,
except perhaps at a), we say that f is discontinuous at a (or f has a discontinuity at a)
if f 1s not continuous at a.

1 .
e — N — 2

=4 %—2
- if x=2

it x # 2




Pm%u Ties

[4] Theorem If f and g are continuous at a and c is a constant, then the follow-
ing functions are also continuous at a:

L: 9 2. f—4 3 ¢f
4. fg 5. ! if gla) # 0
g9
[5] Theorem
(a) Any polynomial is continuous everywhere; that is, it is continuous on
R = (—o, ®).

(b) Any rational function is continuous wherever it is defined; that is, it is contin-
uous on its domain.

12) %\V\ v Vw\ﬂ‘\\f\o‘\/'\w u\‘ 7&\/\

L
) QA ~otrpnt  OF ra\yv\ovwnb

P20 — 1
EXAMPLE 5 Find lim ———
x—>=2 S —3x
SOLUTION The function
X+ 2xr-1
f(x) = =&

is rational, so by Theorem 5 it is continuous on its domain, which is { X | X # %}
Therefore

T+ 2xt -1
lim =% = lim f(x)=f(~2)

x——2 5 — Bx

(2P +2(=22-1 1
N 5t < 3(—2) 1 =




Theorem The following types of functions are continuous at every number in
their domains:

* polynomials ¢ rational functions * root functions
e trigonometric functions * inverse trigonometric functions
 exponential functions ¢ logarithmic functions

sin x

EXAMPLE 7 Evaluate lim

x—m 2 + cosx

SOLUTION Theorem 7 tells us that y = sin x is continuous. The function in the
denominator, y = 2 + cos x, is the sum of two continuous functions and is therefore
continuous. Notice that this function is never 0 because cos x = —1 for all x and so
2 + cos x > 0 everywhere. Thus the ratio

is continuous everywhere. Hence, by the definition of a continuous function,

sin x sin 1 0

lim———=1i = = = =
xl—r>rvlT2+cosx err}Tf(x) f(m) 2 + cos 2—1 2

Li%«:t o b &I/vjoél\‘{’/l"ﬂ\/\‘d

Theorem If f is continuous at b and }1_1)1117 g(x) = b, then ,\h—rg flg(x)) = f(b).
In other words,

lim £(g(x)) = f( lim g(x))
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EXAMPLE 8 Evaluate 11rr} arcsin(

=¥
SOLUTION Because arcsin is a continuous function, we can apply Theorem 8:

| (1= x . 1—4x
lim arcsin 1— = arcsin| lIim ————

x—1 =X X =i

)

= arcsin| lim
x—1 (

1_

1 - vx)
e 1

= arcsin| lim ————

pany + x

1 T

= gresin — = — O
2 6

[9] Theorem If g is continuous at @ and f is continuous at g(a), then the com-
posite function fo g given by (fo g)(x) = f(g(x)) is continuous at a.

B The Intermediate Value Theorem

An important property of continuous functions is expressed by the following theorem,
whose proof is found in more advanced books on calculus.

The Intermediate Value Theorem Suppose that f is continuous on the

closed interval [a, b] and let N be any number between f(a) and f(b), where
f(a) # f(b). Then there exists a number ¢ in (a, b) such that f(c) = N.
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1| Intuitive Definition of a Limit at Infinity Let f be a function defined on

some interval (a, «). Then

lim f(x) = L

X —> 00

means that the values of f(x) can be made arbitrarily close to L by requiring x to

be sufficiently large.

2 | Definition Let f be a function defined on some interval (—, a). Then

lim f(x)=L

xX—>—

means that the values of f(x) can be made arbitrarily close to I by requiring x to
be sufficiently large negative.
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Definition The line y = L is called a horizontal asymptote of the curve

Yy

= f(x) if either
lim f(x) = L or lim f(x) =L

X —>00 X—>—00

EXAMPLE 2 Find lim ] and lim i

xX—®© x xX—>—x X

SOLUTION Observe that when x is large, 1/x is small. For instance,

1 1
100 0.01 10.000 0.0001 1.000.000 0.000001

In fact, by taking x large enough, we can make 1/x as close to 0 as we please. There-
fore, according to Definition 1, we have

lim — =0
X—® X
Similar reasoning shows that when x is large negative, 1/x is small negative, so we also

have
o1
Im —=0
x——x X
It follows that the line y = 0 (the x-axis) is a horizontal asymptote of the curve
y = 1/x. (This is a hyperbola; see Figure 6.)




B Evaluating Limits at Infinity

Most of the Limit Laws that were given in Section 2.3 also hold for limits at infinity. It
can be proved that the Limit Laws listed in Section 2.3 (with the exception of Laws 10 and
11) are also valid if “x — a” is replaced by “x — ©” or “x — —.” In particular, if we
combine Laws 6 and 7 with the results of Example 2, we obtain the following important
rule for calculating limits.

E] Theorem If r > (0 is a rational number, then

1
Iim e 0
x—® X

If » > 0 1s a rational number such that x” is defined for all x, then

1
Iim —=0

x——o0o x"

EXAMPLE 3 Evaluate the following limit and indicate which properties of limits are
used at each stage.

lim 3%" — —2

x—» 5x% + 4x + 1

SOLUTION As x becomes large, both numerator and denominator become large, so it
isn’t obvious what happens to their ratio. We need to do some preliminary algebra.

To evaluate the limit at infinity of any rational function, we first divide both the
numerator and denominator by the highest power of x that occurs in the denominator.
(We may assume that x # 0, since we are interested only in large values of x.) In this
case the highest power of x in the denominator is x?, so we have

xP—x-—-2 - 1 _ i
oo 3xr—x-2 , x? , x  x?
lim —FV—————=lim —¥——— = lim ————
x—e 5x° 4+ 4x + 1 x=» 5x" +4x + 1 ao= 4 1
% x X
1 2
o1 2)
xX—>% x X o
— % | (by Limit Law 5)
lim<5 + —+ —2>
x— K X

1
lim 3 — lim — — 2 lim —
X—® x—0 X x—n xX°
= 1 1 (by 1, 2, and 3)
lim 5 + 4 lim — + lim —

xX—>® x—® X x—% X

_3-0-0 WD ——
S10+0 (by 8 an eorem 5)
3
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¢ 50, Let f(x) = 1/x and g(x) = 1/x°.

(a) Find (f° g)(x).

(b) Is f e g continuous everywhere? Explain.

=322

CB_Q) 9217171/ . sin(tan(cos 0))




