Sat 5/18

Velocity Problem

$$f(t) = the position of the pt at the time t
from a k t,
average velocity = $\frac{change in position}{change in time} = \frac{f(t) - f(a)}{t - a}$
What is the instantaneous velocity at a?
 $v(a) = \lim_{t \to a} \frac{f(t) - f(a)}{t - a}$$$

1 Intuitive Definition of a Limit Suppose f(x) is defined when x is near the number a. (This means that f is defined on some open interval that contains a, except possibly at a itself.) Then we write

$$\lim_{x \to a} f(x) = L$$

and say

"the limit of f(x), as x approaches a, equals L"

if we can make the values of f(x) arbitrarily close to *L* (as close to *L* as we like) by restricting *x* to be sufficiently close to *a* (on either side of *a*) but not equal to *a*.

<u>e 9</u>.

x	$\frac{\sin x}{x}$
±1.0	0.84147098
± 0.5	0.95885108
±0.4	0.97354586
±0.3	0.98506736
±0.2	0.99334665
±0.1	0.99833417
± 0.05	0.99958339
± 0.01	0.99998333
± 0.005	0.99999583
± 0.001	0.99999983

EXAMPLE 2 Guess the value of $\lim_{x \to 0} \frac{\sin x}{x}$.

SOLUTION The function $f(x) = (\sin x)/x$ is not defined when x = 0. Using a calculator (and remembering that, if $x \in \mathbb{R}$, sin x means the sine of the angle whose *radian* measure is x), we construct a table of values correct to eight decimal places. From the table at the left and the graph in Figure 4 we guess that

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

This guess is in fact correct, as will be proved in Chapter 3 using a geometric argument.

 $y = \frac{\sin x}{x}$

FIGURE 4

$$\frac{A \quad counter - example}{\sum_{\substack{x \to 0}} \sin\left(\frac{\pi}{x}\right)}$$

$$\cdot \quad \int \left(\frac{1}{n}\right) = 0, \quad n \in \mathbb{Z} \quad \left(\text{ notice that } \frac{1}{n} \to o \quad \infty \quad n \to \infty \right)$$
hence if the limit exist, it should be O

$$\cdot \quad \int \left(\frac{1}{n+\frac{1}{2}}\right) = 1, \quad n \in \mathbb{Z} \quad \left(\text{ notice three } \frac{1}{n+\frac{1}{2}} \to 0 \quad \alpha \in n \to \infty \right)$$
hence if the limit exist, it should be 1

$$O \quad \stackrel{?}{=} \quad 1$$

 $H(t) = \begin{cases} 0 & \text{if } t < 0\\ 1 & \text{if } t \ge 0 \end{cases}$ (This function is named after the electrical engineer Oliver Heaviside [1850–1925] and can be used to describe an electric current that is switched on at time t = 0.) Its graph is shown in Figure 5.

FIGURE 5

Ī

If we approach O from LHS, we write is as

$$\chi \longrightarrow O^{-}$$

 $H(x) = O = \int \lim_{x \to O^{-}} H(x) = O$
 $x \to O^{-}$
If we approach O from RHS, we write is as

$$\chi \rightarrow 0^{+}$$

 $H(x) = 1 = \int_{x \rightarrow 0^{-}} L_{im} H(x) = 1$

2 Intuitive Definition of One-Sided Limits We write

$$\lim_{x \to a^-} f(x) = L$$

and say that the **left-hand limit** of f(x) as x approaches a [or the limit of f(x) as x approaches a from the left] is equal to L if we can make the values of f(x) arbitrarily close to L by restricting x to be sufficiently close to a with x less than a. We write

$$\lim_{x \to a^+} f(x) = L$$

and say that the **right-hand limit** of f(x) as x approaches a [or the limit of f(x) as x approaches a from the right] is equal to L if we can make the values of f(x) arbitrarily close to L by restricting x to be sufficiently close to a with x greater than a.

Relation to Limit

Notice that Definition 2 differs from Definition 1 only in that we require x to be less than (or greater than) a. By comparing these definitions, we see that the following is true.

3 $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a^-} f(x) = L$ and $\lim_{x \to a^+} f(x) = L$

4 Intuitive Definition of an Infinite Limit Let *f* be a function defined on both sides of *a*, except possibly at *a* itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a.

5 Definition Let *f* be a function defined on both sides of *a*, except possibly at *a* itself. Then

$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.

Vertical Asymptotes

6 Definition The vertical line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the following statements is true:

 $\lim_{x \to a} f(x) = \infty \qquad \lim_{x \to a^{-}} f(x) = \infty \qquad \lim_{x \to a^{+}} f(x) = \infty$ $\lim_{x \to a} f(x) = -\infty \qquad \lim_{x \to a^{-}} f(x) = -\infty \qquad \lim_{x \to a^{+}} f(x) = -\infty$

e.j,

EXAMPLE 7 Does the curve $y = \frac{2x}{x-3}$ have a vertical asymptote?

SOLUTION There is a potential vertical asymptote where the denominator is 0, that is, at x = 3, so we investigate the one-sided limits there.

If x is close to 3 but larger than 3, then the denominator x - 3 is a small positive number and 2x is close to 6. So the quotient 2x/(x - 3) is a large *positive* number. [For instance, if x = 3.01 then 2x/(x - 3) = 6.02/0.01 = 602.] Thus, intuitively, we see that

$$\lim_{x \to 3^+} \frac{2x}{x-3} = \infty$$

Likewise, if x is close to 3 but smaller than 3, then x - 3 is a small negative number but 2x is still a positive number (close to 6). So 2x/(x - 3) is a numerically large *negative* number. Thus

$$\lim_{x \to 3^-} \frac{2x}{x-3} = -\infty$$

The graph of the curve y = 2x/(x - 3) is given in Figure 13. According to Definition 6, the line x = 3 is a vertical asymptote.

EXAMPLE 8 Find the vertical asymptotes of $f(x) = \tan x$.

SOLUTION Because

$$\tan x = \frac{\sin x}{\cos x}$$

there are potential vertical asymptotes where $\cos x = 0$. In fact, since $\cos x \to 0^+$ as $x \to (\pi/2)^-$ and $\cos x \to 0^-$ as $x \to (\pi/2)^+$, whereas $\sin x$ is positive (near 1) when x is near $\pi/2$, we have

 $\lim_{x \to (\pi/2)^{-}} \tan x = \infty \quad \text{and} \quad \lim_{x \to (\pi/2)^{+}} \tan x = -\infty$

This shows that the line $x = \pi/2$ is a vertical asymptote. Similar reasoning shows that the lines $x = \pi/2 + n\pi$, where *n* is an integer, are all vertical asymptotes of $f(x) = \tan x$. The graph in Figure 14 confirms this.

 $v = \ln x$

that the lines $x = \pi/2 + n\pi$, where *n* is an integer, are all vertical asymptotes of $f(x) = \tan x$. The graph in Figure 14 confirms this.

Another example of a function whose graph has a vertical asymptote is the natural logarithmic function $y = \ln x$. From Figure 15 we see that

$$\lim_{x\to 0^+}\ln x = -\infty$$

and so the line x = 0 (the y-axis) is a vertical asymptote. In fact, the same is true for $y = \log_b x$ provided that b > 1. (See Figures 1.5.11 and 1.5.12.)

FIGURE 15

FIGURE 14 $y = \tan x$

y A

The y-axis is a vertical asymptote of the natural logarithmic function.

EXAMPLE 2 Evaluate the following limits and justify each step.

(a)
$$\lim_{x \to 5} (2x^2 - 3x + 4)$$
 (b)
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

1. Direct substitution

Direct Substitution Property If f is a polynomial or a rational function and a is in the domain of f, then

$$\lim_{x \to a} f(x) = f(a)$$

Tangent line problem:
$$f(x) = x^2$$
 at $x = 1$

EXAMPLE 3 Find
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
.

SOLUTION Let $f(x) = (x^2 - 1)/(x - 1)$. We can't find the limit by substituting x = 1 because f(1) isn't defined. Nor can we apply the Quotient Law, because the limit of the denominator is 0. Instead, we need to do some preliminary algebra. We factor the numerator as a difference of squares:

$$\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1}$$

The numerator and denominator have a common factor of x - 1. When we take the limit as x approaches 1, we have $x \neq 1$ and so $x - 1 \neq 0$. Therefore we can cancel the common factor, x - 1, and then compute the limit by direct substitution as follows:

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$
$$= \lim_{x \to 1} (x + 1) = 1 + 1 = 2$$

The limit in this example arose in Example 2.1.1 in finding the tangent to the parabola $y = x^2$ at the point (1, 1).

EXAMPLE 5 Evaluate
$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$$
.

SOLUTION If we define

$$F(h) = \frac{(3+h)^2 - 9}{h}$$

then, as in Example 3, we can't compute $\lim_{h\to 0} F(h)$ by letting h = 0 because F(0) is undefined. But if we simplify F(h) algebraically, we find that

$$F(h) = \frac{(9+6h+h^2)-9}{h} = \frac{6h+h^2}{h}$$
$$= \frac{h(6+h)}{h} = 6+h$$

(Recall that we consider only $h \neq 0$ when letting h approach 0.) Thus

$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h} = \lim_{h \to 0} (6+h) = 6$$
EXAMPLE 6 Find $\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2}$.

SOLUTION We can't apply the Quotient Law immediately because the limit of the denominator is 0. Here the preliminary algebra consists of rationalizing the numerator:

$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} = \lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} \cdot \frac{\sqrt{t^2 + 9} + 3}{\sqrt{t^2 + 9} + 3}$$
$$= \lim_{t \to 0} \frac{(t^2 + 9) - 9}{t^2(\sqrt{t^2 + 9} + 3)}$$
$$= \lim_{t \to 0} \frac{t^2}{t^2(\sqrt{t^2 + 9} + 3)}$$
$$= \lim_{t \to 0} \frac{1}{\sqrt{t^2 + 9} + 3}$$
$$= \frac{1}{\sqrt{\lim_{t \to 0} (t^2 + 9)} + 3}$$
 (Here we use several properties of limits: 5, 1, 7, 8, 10.)
$$= \frac{1}{3 + 3} = \frac{1}{6}$$

Fact :

2 Theorem If $f(x) \le g(x)$ when x is near a (except possibly at a) and the limits of f and g both exist as x approaches a, then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$$

3 The Squeeze Theorem If $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a) and

 $x \rightarrow a$

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$
$$\lim_{x \to a} g(x) = L$$

then

EXAMPLE 11 Show that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0.$

e-z

SOLUTION First note that we **cannot** rewrite the limit as the product of the limits $\lim_{x\to 0} x^2$ and $\lim_{x\to 0} \sin(1/x)$ because $\lim_{x\to 0} \sin(1/x)$ does not exist (see Example 2.2.5).

We *can* find the limit by using the Squeeze Theorem. To apply the Squeeze Theorem we need to find a function f smaller than $g(x) = x^2 \sin(1/x)$ and a function h bigger than g such that both f(x) and h(x) approach 0 as $x \to 0$. To do this we use our knowledge of the sine function. Because the sine of any number lies between -1 and 1, we can write

$$-1 \le \sin \frac{1}{x} \le 1$$

Any inequality remains true when multiplied by a positive number. We know that $x^2 \ge 0$ for all x and so, multiplying each side of the inequalities in (4) by x^2 , we get

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2$$

as illustrated by Figure 8. We know that

 $\lim_{x \to 0} x^2 = 0 \quad \text{and} \quad \lim_{x \to 0} (-x^2) = 0$

Taking $f(x) = -x^2$, $g(x) = x^2 \sin(1/x)$, and $h(x) = x^2$ in the Squeeze Theorem, we obtain

$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

Precise definition of limit

2 Precise Definition of a Limit Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say that the limit of f(x) as x approaches a is L, and we write

$$\lim_{x \to a} f(x) = L$$

if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that
if $0 < |x - a| < \delta$ then $|f(x) - L| < \varepsilon$

EXAMPLE 2 Prove that $\lim_{x \to 3} (4x - 5) = 7$.

$$\xi \sim \left(\int = \frac{\xi}{4} \right)$$

One-Sided Limits

The intuitive definitions of one-sided limits that were given in Section 2.2 can be precisely reformulated as follows.

6 Precise Definition of an Infinite Limit Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that for every positive number M there is a positive number δ such that

if $0 < |x - a| < \delta$ then f(x) > M

Continuity

Continuity of a Function

We noticed in Section 2.3 that the limit of a function as *x* approaches *a* can often be found simply by calculating the value of the function at *a*. Functions having this property are called *continuous at a*. We will see that the mathematical definition of continuity corresponds closely with the meaning of the word *continuity* in everyday language. (A continuous process is one that takes place without interruption.)

1 Definition A function *f* is **continuous at a number** *a* if

$$\lim_{x \to a} f(x) = f(a)$$

Notice that Definition 1 implicitly requires three things if f is continuous at a:

- **1.** f(a) is defined (that is, a is in the domain of f)
- 2. $\lim_{x \to a} f(x)$ exists
- $3. \lim_{x \to a} f(x) = f(a)$

If f is defined near a (in other words, f is defined on an open interval containing a, except perhaps at a), we say that f is **discontinuous at** a (or f has a **discontinuity** at a) if f is not continuous at a.

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

4 Theorem If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

1. $f + g$	2. $f - g$	3. cf
4. <i>fg</i>	5. $\frac{f}{g}$ if $g(a) \neq 0$	

Corollary :

5 Theorem

- (a) Any polynomial is continuous everywhere; that is, it is continuous on $\mathbb{R} = (-\infty, \infty)$.
- (b) Any rational function is continuous wherever it is defined; that is, it is continuous on its domain.

EXAMPLE 5 Find
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

SOLUTION The function

$$f(x) = \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

is rational, so by Theorem 5 it is continuous on its domain, which is $\{x \mid x \neq \frac{5}{3}\}$. Therefore

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \lim_{x \to -2} f(x) = f(-2)$$
$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)} = -\frac{1}{11}$$

7 Theorem The following types of functions are continuous at every number in their domains:

- polynomials
 rational functions
 root functions

- trigonometric functions
- inverse trigonometric functions
- exponential functions
- logarithmic functions

EXAMPLE 7 Evaluate $\lim_{x \to \pi} \frac{\sin x}{2 + \cos x}$.

SOLUTION Theorem 7 tells us that $y = \sin x$ is continuous. The function in the denominator, $y = 2 + \cos x$, is the sum of two continuous functions and is therefore continuous. Notice that this function is never 0 because $\cos x \ge -1$ for all *x* and so $2 + \cos x > 0$ everywhere. Thus the ratio

$$f(x) = \frac{\sin x}{2 + \cos x}$$

is continuous everywhere. Hence, by the definition of a continuous function,

$$\lim_{x \to \pi} \frac{\sin x}{2 + \cos x} = \lim_{x \to \pi} f(x) = f(\pi) = \frac{\sin \pi}{2 + \cos \pi} = \frac{0}{2 - 1} = 0$$

Limit of Composition

8 Theorem If f is continuous at b and $\lim_{x \to a} g(x) = b$, then $\lim_{x \to a} f(g(x)) = f(b)$. In other words,

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$$

ej.

EXAMPLE 8 Evaluate
$$\lim_{x \to 1} \arcsin\left(\frac{1-\sqrt{x}}{1-x}\right)$$
.

SOLUTION Because arcsin is a continuous function, we can apply Theorem 8:

$$\lim_{x \to 1} \arcsin\left(\frac{1-\sqrt{x}}{1-x}\right) = \arcsin\left(\lim_{x \to 1} \frac{1-\sqrt{x}}{1-x}\right)$$
$$= \arcsin\left(\lim_{x \to 1} \frac{1-\sqrt{x}}{(1-\sqrt{x})(1+\sqrt{x})}\right)$$
$$= \arcsin\left(\lim_{x \to 1} \frac{1}{1+\sqrt{x}}\right)$$
$$= \arcsin\left(\frac{1}{2} = \frac{\pi}{6}\right)$$

9 Theorem If g is continuous at a and f is continuous at g(a), then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

The Intermediate Value Theorem

An important property of continuous functions is expressed by the following theorem, whose proof is found in more advanced books on calculus.

10 The Intermediate Value Theorem Suppose that f is continuous on the closed interval [a, b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that f(c) = N.

1 Intuitive Definition of a Limit at Infinity Let f be a function defined on some interval (a, ∞) . Then

$$\lim_{x \to \infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large.

2 Definition Let f be a function defined on some interval $(-\infty, a)$. Then

$$\lim_{x \to -\infty} f(x) = L$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be sufficiently large negative.

3 Definition The line y = L is called a horizontal asymptote of the curve y = f(x) if either

 $\lim_{x \to \infty} f(x) = L \quad \text{or} \quad \lim_{x \to -\infty} f(x) = L$

EXAMPLE 2 Find $\lim_{x\to\infty} \frac{1}{x}$ and $\lim_{x\to-\infty} \frac{1}{x}$.

SOLUTION Observe that when x is large, 1/x is small. For instance,

$$\frac{1}{100} = 0.01 \qquad \frac{1}{10,000} = 0.0001 \qquad \frac{1}{1,000,000} = 0.000001$$

In fact, by taking x large enough, we can make 1/x as close to 0 as we please. Therefore, according to Definition 1, we have

$$\lim_{x\to\infty}\frac{1}{x}=0$$

Similar reasoning shows that when x is large negative, 1/x is small negative, so we also have

$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

It follows that the line y = 0 (the *x*-axis) is a horizontal asymptote of the curve y = 1/x. (This is a hyperbola; see Figure 6.)

Evaluating Limits at Infinity

Most of the Limit Laws that were given in Section 2.3 also hold for limits at infinity. It can be proved that *the Limit Laws listed in Section 2.3 (with the exception of Laws 10 and 11) are also valid if* " $x \rightarrow a$ " *is replaced by* " $x \rightarrow \infty$ " or " $x \rightarrow -\infty$." In particular, if we combine Laws 6 and 7 with the results of Example 2, we obtain the following important rule for calculating limits.

5 Theorem If r > 0 is a rational number, then

$$\lim_{x\to\infty}\frac{1}{x^r}=0$$

If r > 0 is a rational number such that x^r is defined for all x, then

$$\lim_{x \to -\infty} \frac{1}{x^r} = 0$$

EXAMPLE 3 Evaluate the following limit and indicate which properties of limits are used at each stage.

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$$

SOLUTION As *x* becomes large, both numerator and denominator become large, so it isn't obvious what happens to their ratio. We need to do some preliminary algebra.

To evaluate the limit at infinity of any rational function, we first divide both the numerator and denominator by the highest power of x that occurs in the denominator. (We may assume that $x \neq 0$, since we are interested only in large values of x.) In this case the highest power of x in the denominator is x^2 , so we have

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} = \lim_{x \to \infty} \frac{\frac{3x^2 - x - 2}{x^2}}{\frac{5x^2 + 4x + 1}{x^2}} = \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$$
$$= \frac{\lim_{x \to \infty} \left(3 - \frac{1}{x} - \frac{2}{x^2}\right)}{\lim_{x \to \infty} \left(5 + \frac{4}{x} + \frac{1}{x^2}\right)} \qquad \text{(by Limit Law 5)}$$
$$= \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - 2\lim_{x \to \infty} \frac{1}{x^2}}{\lim_{x \to \infty} 5 + 4\lim_{x \to \infty} \frac{1}{x} + \lim_{x \to \infty} \frac{1}{x^2}} \qquad \text{(by 1, 2, and 3)}$$
$$= \frac{3 - 0 - 0}{5 + 0 + 0} \qquad \text{(by 8 and Theorem 5)}$$
$$= \frac{3}{5}$$

50. Let f(x) = 1/x and g(x) = 1/x². (a) Find (f ∘ g)(x). (b) Is f ∘ g continuous everywhere? Explain.

(29)
$$h(t) = \frac{\cos(t^2)}{1 - e^t}$$

