# Fr 5/17 Course Overview

- O. Functions
- 1. Limits & Derivatives
- 2 Applications of Derivatives
- 3. Definite integral







D: a subset of  $\mathbb{R}$ , (usually <u>intervals</u> I = (a, b)) R: a subset of  $\mathbb{R}$ 



We usually consider functions for which the sets D and E are sets of real numbers. The set D is called the **domain** of the function. The number f(x) is the **value of** f at x and is read "f of x." The **range** of f is the set of all possible values of f(x) as x varies

$$f(x)$$
: value of  $f$  at  $x$ ,  
 $f$  of  $x$ , or just  $f x$ 

• How to represent a function?  
• by formulas  

$$f(x) = \pi x^{2} \qquad f(x) = \pi \cdot 1^{2} = \pi, \quad f(z) = \pi \cdot 2^{2} = \frac{\mu}{\pi}$$
• Ex. Evaluate:  

$$\frac{f(a+h) - f(a)}{h} \qquad a, h \in \mathbb{R}$$

$$= \frac{\pi (a+h)^{2} - \pi a^{2}}{h}$$

$$= \frac{\pi a^{2} + 2\pi a h + \pi h^{2} - \pi a^{2}}{h}$$

$$= 2\pi a + \pi h$$



$$\left[\begin{array}{c} \text{points on the plane} \right] \xrightarrow{1-1} \left(\begin{array}{c} \text{pairs it numbers } (x,y) \right)$$
  
graph of a function:  $\left((x, f(x)) : x \in D\right)$ 



More Examples of functions · Absolute Value function  $|\cdot|: x \longmapsto |x| = \begin{cases} x, & \text{if } x \ge 0, \\ -x, & \text{if } x < 0. \end{cases}$ · Even & Odd function Even:  $f(x) = f(-x), \quad \forall x \in D$  $f(x) = x^2$ 

Odl: 
$$f(-x) = -f(x), \forall x \in i$$
  
 $f(x) = x, \quad f(x) = x^3$ 

A function f is called **increasing** on an interval I if  $f(x_1) < f(x_2)$  whenever  $x_1 < x_2$  in I It is called **decreasing** on I if  $f(x_1) > f(x_2)$  whenever  $x_1 < x_2$  in I



Polynomial functions  

$$P(x) = a_n x^n + G_{h+} x^{h-1} + \dots + G_h x + G_h$$
  
 $a_i \in \mathbb{R} \implies \text{ coefficients of } P(x)$   
 $a_n \implies \text{ lending wefficient, } a_n \neq o$   
 $G_o \implies \text{ constant term}$ 

Rational functions  

$$f(x) = \frac{P(x)}{Q(x)}$$
,  $P(x) \& Q(x)$  are polynomial functions

A function f is called an **algebraic function** if it can be constructed using algebraic operations (such as addition, subtraction, multiplication, division, and taking roots) starting with polynomials. Any rational function is automatically an algebraic function. Here

$$f(x) = \sqrt{x^2 + 1} \qquad g(x) = \frac{x^4 - 16x^2}{x + \sqrt{x}} + (x - 2)\sqrt[3]{x + 1}$$

An example of an algebraic function occurs in the theory of relativity. The mass of a particle with velocity v is

$$m = f(v) = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

where  $m_0$  is the rest mass of the particle and  $c = 3.0 \times 10^5$  km/s is the speed of light in a vacuum.

Functions that are not algebraic are called **transcendental**; these include the trigonometric, exponential, and logarithmic functions.



$$Sec \chi = \frac{1}{\cos \chi}$$

<u>Recall</u>: definition  $TT rad = 16^{\circ}$   $X rad = \left(\frac{160 \times T}{TT}\right)^{\circ}$   $Sin(x) = Sin\left(\frac{160 \times T}{TT}\right)^{\circ}$  $COS(x) = Cas\left(\frac{160 \times T}{TT}\right)^{\circ}$ 



An important property of the sine and cosine functions is that they are periodic functions and have period  $2\pi$ . This means that, for all values of *x*,

 $\sin(x + 2\pi) = \sin x \qquad \cos(x + 2\pi) = \cos x$ 

**EXAMPLE 5** Find the domain of the function  $f(x) = \frac{1}{1 - 2\cos x}$ .

**SOLUTION** This function is defined for all values of *x* except for those that make the denominator 0. But

$$1 - 2\cos x = 0 \iff \cos x = \frac{1}{2} \iff x = \frac{\pi}{3} + 2n\pi \text{ or } x = \frac{5\pi}{3} + 2n\pi$$

where *n* is any integer (because the cosine function has period  $2\pi$ ). So the domain of *f* is the set of all real numbers except for the ones noted above.

i.e. there exists a real marker 
$$S$$
, s.t.  $Z^{r_n} \longrightarrow S$ 

There are holes in the graph in Figure 1 corresponding to irrational values of x. We want to fill in the holes by defining  $f(x) = 2^x$ , where  $x \in \mathbb{R}$ , so that f is an increasing function. In particular, since the irrational number  $\sqrt{3}$  satisfies

 $1.7 < \sqrt{3} < 1.8$ we must have  $2^{1.7} < 2^{\sqrt{3}} < 2^{1.8}$ 

and we know what  $2^{1.7}$  and  $2^{1.8}$  mean because 1.7 and 1.8 are rational numbers. Similarly, if we use better approximations for  $\sqrt{3}$ , we obtain better approximations for  $2^{\sqrt{3}}$ :

$$\begin{array}{rcl} 1.73 < \sqrt{3} < 1.74 & \Rightarrow & 2^{1.73} < 2^{\sqrt{3}} < 2^{1.74} \\ 1.732 < \sqrt{3} < 1.733 & \Rightarrow & 2^{1.732} < 2^{\sqrt{3}} < 2^{1.733} \\ 1.7320 < \sqrt{3} < 1.7321 & \Rightarrow & 2^{1.7320} < 2^{\sqrt{3}} < 2^{1.7321} \\ 1.73205 < \sqrt{3} < 1.73206 & \Rightarrow & 2^{1.73205} < 2^{\sqrt{3}} < 2^{1.73206} \end{array}$$

**Laws of Exponents** If *a* and *b* are positive numbers and *x* and *y* are any real numbers, then

**1.** 
$$b^{x+y} = b^x b^y$$
 **2.**  $b^{x-y} = \frac{b^x}{b^y}$  **3.**  $(b^x)^y = b^{xy}$  **4.**  $(ab)^x = a^x b^x$ 



Natural exponential:  

$$f(x) = e^{x} : its \quad tangent \ (ine \ at \ (o,1))$$

$$has \ slope \ (1)$$

$$2 < e < 3$$

$$e \approx 2.71828 \text{ s.s.}$$
we will encounter  $e \quad in \quad further \ closses$ 

$$e \quad pectedly$$

### One-to-One Functions

Let's compare the functions f and g whose arrow diagrams are shown in Figure 1. Note that f never takes on the same value twice (any two numbers in A have different images), whereas g does take on the same value twice (both 2 and 3 have the same image, 4). In symbols, g(2) = g(3) but  $f(x_1) \neq f(x_2)$  whenever  $x_1 \neq x_2$ . Functions that have this latter property are called *one-to-one*.



FIGURE 1

#### **DEFINITION OF A ONE-TO-ONE FUNCTION**

A function with domain A is called a **one-to-one function** if no two elements of A have the same image, that is,

 $f(x_1) \neq f(x_2)$  whenever  $x_1 \neq x_2$ 



## horizont- line test.

#### HORIZONTAL LINE TEST

A function is one-to-one if and only if no horizontal line intersects its graph more than once.

## Inverse function:

### The Inverse of a Function

One-to-one functions are important because they are precisely the functions that possess inverse functions according to the following definition.

### **DEFINITION OF THE INVERSE OF A FUNCTION**

Let *f* be a one-to-one function with domain *A* and range *B*. Then its **inverse** function  $f^{-1}$  has domain *B* and range *A* and is defined by

$$f^{-1}(y) = x \quad \Leftrightarrow \quad f(x) = y$$

for any y in B.

Example: 
$$n - th$$
 power & principal  $n - th$  not  
 $f(x) = x^n$   
 $f^{-1}(y) = x, s.t.$   $f(x) = y, i... = x^n = y$   
 $= y^{\frac{1}{n}} - \sqrt[n]{y}$ 

This definition says that if f takes x to y, then  $f^{-1}$  takes y back to x. (If f were not one-to-one, then  $f^{-1}$  would not be defined uniquely.) The arrow diagram in Figure 6 indicates that  $f^{-1}$  reverses the effect of f. From the definition we have

domain of 
$$f^{-1}$$
 = range of  $f$   
range of  $f^{-1}$  = domain of  $f$ 

$$\underline{N_{otc}}: f'(x)$$
 doesn't mean  $\frac{1}{f(x)}$ 

The letter x is traditionally used as the independent variable, so when we concentrate on  $f^{-1}$  rather than on f, we usually reverse the roles of x and y in Definition 2 and write

3 
$$f^{-1}(x) = y \iff f(y) = x$$

Г

4

By substituting for *y* in Definition 2 and substituting for *x* in (3), we get the following **cancellation equations**:

$$f^{-1}(f(x)) = x$$
 for every  $x$  in  $A$   
 $f(f^{-1}(x)) = x$  for every  $x$  in  $B$ 



When we apply the Inverse Function Property described on page 222 to  $f(x) = a^x$ and  $f^{-1}(x) = \log_a x$ , we get

$$\log_a(a^x) = x \qquad x \in \mathbb{R}$$
$$a^{\log_a x} = x \qquad x > 0$$

We list these and other properties of logarithms discussed in this section.

#### **PROPERTIES OF LOGARITHMS**

| Property                     | Reason                                                                     |
|------------------------------|----------------------------------------------------------------------------|
| <b>1.</b> $\log_a 1 = 0$     | We must raise a to the power 0 to get 1.                                   |
| <b>2.</b> $\log_a a = 1$     | We must raise a to the power 1 to get a.                                   |
| <b>3.</b> $\log_a a^x = x$   | We must raise $a$ to the power $x$ to get $a^x$ .                          |
| <b>4.</b> $a^{\log_a x} = x$ | $\log_a x$ is the power to which <i>a</i> must be raised to get <i>x</i> . |

Laws of Logarithms If x and y are positive numbers, then

1. 
$$\log_b(xy) = \log_b x + \log_b y$$
  
2.  $\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$   
3.  $\log_b(x^r) = r \log_b x$  (where *r* is any real number)

Grophs

Recall that if a one-to-one function f has domain A and range B, then its inverse function  $f^{-1}$  has domain B and range A. Since the exponential function  $f(x) = a^x$  with  $a \neq 1$  has domain  $\mathbb{R}$  and range  $(0, \infty)$ , we conclude that its inverse function,  $f^{-1}(x) = \log_a x$ , has domain  $(0, \infty)$  and range  $\mathbb{R}$ .



**FIGURE 2** Graph of the logarithmic function  $f(x) = \log_a x$ 

Figure 4 shows the graphs of the family of logarithmic functions with bases 2, 3, 5, and 10. These graphs are drawn by reflecting the graphs of  $y = 2^x$ ,  $y = 3^x$ ,  $y = 5^x$ , and  $y = 10^x$  (see Figure 2 in Section 4.1) in the line y = x. We can also plot points as an aid to sketching these graphs, as illustrated in Example 4.



$$l_n \chi = l_{oge} \chi$$

Example: Inverse trigonometric function



**FIGURE 18**  
$$y = \sin x, \ -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$Sin^{T}$$
:  $[T, I] \rightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$ 

$$\sin^{-1}x = y \iff \sin y = x \text{ and } -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$



FIGURE 21

 $y = \cos x, 0 \le x \le \pi$ 

The **inverse cosine function** is handled similarly. The restricted cosine function  $f(x) = \cos x$ ,  $0 \le x \le \pi$ , is one-to-one (see Figure 21) and so it has an inverse function denoted by  $\cos^{-1}$  or arccos.

 $\cos^{-1}(\cos x) = x \quad \text{for } 0 \le x \le \pi$  $\cos(\cos^{-1}x) = x \quad \text{for } -1 \le x \le 1$ 

$$\cos^{-1}x = y \iff \cos y = x \text{ and } 0 \le y \le \pi$$

The cancellation equations are

$$\begin{array}{c} y \\ \pi \\ \hline \\ -1 \end{array}$$

**FIGURE 22**  $y = \cos^{-1}x = \arccos x$ 

The tangent function can be made one-to-one by restricting it to the interval  $(-\pi/2, \pi/2)$ . Thus the **inverse tangent function** is defined as the inverse of the function  $f(x) = \tan x, -\pi/2 < x < \pi/2$ . (See Figure 23.) It is denoted by  $\tan^{-1}$  or arctan.

$$\tan^{-1}x = y \iff \tan y = x \text{ and } -\frac{\pi}{2} < y < \frac{\pi}{2}$$

The inverse tangent function,  $\tan^{-1} = \arctan$ , has domain  $\mathbb{R}$  and range  $(-\pi/2, \pi/2)$ . Its graph is shown in Figure 25.



 $\begin{array}{c|cccc} y & y \\ & y$ 

