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Green’s Theorem Let C be a positively oriented, piecewise-smooth, simple
closed curve in the plane and let D be the region bounded by C. If P and Q have
continuous partial derivatives on an open region that contains D, then
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Instead of using polar coordinates, we
could simply use the fact that Dis a
disk of radius 3 and write

|| 4dA =4 - w(3)* = 36m
n

EXAMPLE 1 Evaluate [.x*dx + xy dy, where C is the triangular curve consisting of
the line segments from (0, 0) to (1, 0), from (1, 0) to (0, 1), and from (0, 1) to (0, 0).

SOLUTION Although the given line integral could be evaluated as usual by the methods
of Section 16.2, that would involve setting up three separate integrals along the three
sides of the triangle, so let’s use Green’s Theorem instead. Notice that the region D
enclosed by C is simple and C has positive orientation (see Figure 4). If we let

P(x,y) = x*and Q(x, y) = xy, then we have
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EXAMPLE 2 Evaluate ¢( (3y — e™) dx + (7x + /y* + 1) dy, where C is the circle
24+ yr=09.

SOLUTION The region D bounded by C is the disk x* + y* < 9, so let’s change to
polar coordinates after applying Green’s Theorem:
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There are several possibilities:
P(x,y) =0 P(x,y) = —y P(x,y) = —3y
O(x,y) = x O(x,y) =0 Q(x,y) = 3x

Then Green’s Theorem gives the following formulas for the area of D:
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EXAMPLE 3 Find the area enclosed by the ellipse x, + i—, = 1.
e 2

SOLUTION The ellipse has parametric equations x = a cos t and y = b sin f, where
0 =< t =< 2. Using the third formula in Equation 5, we have
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EXAMPLE 4 Evaluate §,.y> dx + 3xy dy, where C is the boundary of the semiannular
region D in the upper half-plane between the circles x* + y*> = 1 and x> + y*> = 4.

SOLUTION Notice that although D is not simple, the y-axis divides it into two simple
regions (see Figure 8). In polar coordinates we can write

D={ro)|1<sr<20<6<n

Therefore Green’s Theorem gives
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EXAMPLE5 IfF(x,y) = (—yi + xj)/(x* + y*), show that [ .F + dr = 2 for every
positively oriented simple closed path that encloses the origin.
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Exercive: s ) S
8. [o(x*+ y*)dx + (x* — y?) dy,

C is the triangle with vertices (0, 0), (2, 1), and (0, 1)
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22, A particle starts at the origin, moves along the x-axis to
(5, 0), then along the quarter-circle x* + y* = 25, x = 0,
y = 0 to the point (0, 5), and then down the y-axis
back to the origin. Use Green’s Theorem to find
the work done on this particle by the force field
F(x,y) = <Sin x, siny + xy? + %x3>.
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Curl IfF=Pi+ Qj+ Rkis a vector field on R* and the partial derivatives of P, Q, and R
all exist, then the curl of F is the vector field on R* defined by

[1] curlF=(£—£)i+<£—£>j+(£—£>k

ady 0z 0z 0x x dy

Anothur expression (Msf(,r to remember)
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It has meaning when it operates on a scalar function to produce the gradient of f:
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If we think of V as a vector with components d/dx, d/dy, and d/9z, we can also consider
the formal cross product of V with the vector field F as follows:
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=curl F

So the easiest way to remember Definition 1 is by means of the symbolic expression

IZ' curlF =V X F




M: EXAMPLE1 IfF(x,y,z) = xzi + xyzj — y*k, find curl F.
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[3] Theorem If f is a function of three variables that has continuous second-
order partial derivatives, then
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EXAMPLE 2 Show that the vector field F(x, y, z) = xzi + xyzj — y*k is not
conservative.

SOLUTION In Example 1 we showed that
curl F = —y2 + x)i + xj + yzk

This shows that curl F # 0 and so, by the remarks preceding this example, F is not
conservative. &
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(4] Theorem If F is a vector field defined on all of R* whose component func-
tions have continuous partial derivatives and curl F = 0, then F is a conservative

vector field.

EXAMPLE 3
(a) Show that

F(x,y,z) = y*22i + 2xyz’j + 3xy*z’k

1S a conservative vector field.
(b) Find a function f such that F = Vf.



_ IfF =Pi+ Qj + Rkis a vector field on R? and aP/dx, dQ/dy, and dR/dz exist, then
— the divergence of F is the function of three variables defined by

; oP 00  OR
[9] iy B s=r—ishi—= 5 ——
ox dy dz

(If F is a vector field on R?, then div F is a function of two variables defined similarly to
the three-variable case.) Observe that curl F is a vector field but div F is a scalar field. In
terms of the gradient operator V = (9/dx) i + (9/dy) j + (d/0z) k, the divergence of F
can be written symbolically as the dot product of V and F:

divF=V -F

Exonplas
L EXAMPLE 4 IfF(x,y,z) = xzi + xyzj — y*k, find div F.
SOLUTION By the definition of divergence (Equation 9 or 10), we have

0 d Jd
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[11] Theorem IfF = Pi + Qj + Rkis a vector field on R* and P, Q, and R
have continuous second-order partial derivatives, then

divcurl F =0

EXAMPLE 5 Show that the vector field F(x, y,z) = xzi + xyzj — y*k can’t be
written as the curl of another vector field, that is, F # curl G for any vector field G.

SOLUTION In Example 4 we showed that
divF =2z + xz
and therefore div F # 0. If it were true that F = curl G, then Theorem 11 would give
divF =divcurl G =0

which contradicts div F # 0. Therefore F is not the curl of another vector field. [



Exertire 15-20 Determine whether or not the vector field is conservative.

If it is conservative, find a function f such that F = Vf.

18. F(x,y,z) = yzsin xyi + xzsinxyj — cosxyk
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4, F(x,y,z) =sinyzi + sinzxj + sinxyk
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