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Laply s EXAMPLE 1 Evaluate |.(2 + x”y) ds, where C is the upper half of the unit circle
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interpretation of the function f. Suppose that p(x, y) represents the linear density at a
point (x, y) of a thin wire shaped like a curve C (see Example 3.7.2). Then the mass of
the part of the wire from P;—; to P; in Figure 1 is approximately p(x, y) As; and so
the total mass of the wire is approximately = p(x, ) As;. By taking more and more
points on the curve, we obtain the mass m of the wire as the limiting value of these
approximations:

m = lim 21 p(x¥, y¥) As; = ’Cp(x, y) ds

n—®

[For example, if f(x,y) = 2 + x’y represents the density of a semicircular wire, then
the integral in Example 1 would represent the mass of the wire.] The center of mass of
the wire with density function p is located at the point (x, y), where

_ 1 ¢ _ 1 ¢
@ X = ; chp(x, y) ds y= ; JC yp(x,y)ds



EXAMPLE 3 A wire takes the shape of the semicircle x* + y*> =1,y = 0, and is
thicker near its base than near the top. Find the center of mass of the wire if the linear
density at any point is proportional to its distance from the line y = 1.

,)q(h metrizatian

SOLUTION As in Example 1 we use the parametrization x = cos t, y = sin t,
0 < ¢ =< m, and find that ds = dt. The linear density is

p(x,y) = k(1 —y)
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m= [ k(1 = y)ds = ["k(1 = sint) dr = k[t + cos t]y = k(m - 2)

‘LL/u»/\ flw tenter a} mMasy:

1 |
¥= ;Lyp(x,y) ds = mfcyk(l — y)ds

1 T, . g b
(sin t — sin’t) dt = —cost — 3t + Lsin2¢
2 e 2 4 0

T — ) T —
44—
2(mr — 2)

R
y
a



Line ('nfeym/s with m])a/t o ®x o /

(/\Ja Cen rvf){wz As; )7 Ax; or Ay\-,

Two other types of line integrals are obtained by replacing As; by either Ax; = x; — x;—
or Ay; = y; — y;—; in Definition 2. They are called the line integrals of f along C with
respect to x and y:

n

(5] ‘c f(x,y)dx = lim D, f(x¥, y¥) Ax;

0 .
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(6] | f0ey)dy = tim 3 ek, v Ay,
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The following formulas say that line integrals with respect to x and y can also be
evaluated by expressing everything in terms of 7. x = x(¢), y = y(1), dx = x'(¢) dt,
dy = y'(¢) dt.
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[ fy)dx = [ ), y@) x'0) e
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Exa - L - EXAMPLE 4 Evaluate |.y*dx + x dy for two different paths C.

(a) C = C, is the line segment from (=5, —3) to (0, 2).
(b) C = G, is the arc of the parabola x = 4 — y* from (—5, —3) to (0, 2).
(See Figure 7.)
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Line integrals along C with respect to x, y, and z can also be defined. For example,

’V‘C f(x,y,2) dz = lim D, f(x¥, y¥, z*) Az

©
=5

.
= ’ fx(t), y(2), z(2) /() dt
Therefore, as with line integrals in the plane, we evaluate integrals of the form
"’C P(x, y, z) dx + Q(x, y, 2) dy + R(x, y, 2) dz

by expressing everything (x, y, z, dx, dy, dz) in terms of the parameter .



tples ;
M EXAMPLE 5 Evaluate |y sin z ds, where C is the circular helix given by the equa-
tions x =cost,y =sint,z =10 < t < 2. (See Figure 9.)

SOLUTION Formula 9 gives

. f2m dx \? dy \? dz \?
J ysinzds=J2 (sint)sint\/ L R (4 U (L
¢ 0 dt dt dt

(2w ~ 27
= ’ sin’t+/sint + cos2t + 1dr = \/5 ‘ %(l — cos 2t) dt
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=%[ —%sinZt](z)ﬂ=\/5'n' -

EXAMPLE 6 Evaluate [y dx + zdy + x dz, where C consists of the line segment C;
from (2, 0, 0) to (3, 4, 5), followed by the vertical line segment C, from (3, 4, 5) to
(3,4,0).

SOLUTION The curve C is shown in Figure 10. Using Equation 8, we write C; as
(;M sAR L~ r() =(1-10(2,0,0) +#(3,4,5) = (2 + ¢, 4t, 5¢)
e Alw 1+ or, in parametric form, as

x=2+t y = 4t z=>5t 0=s=r=<1
Thus

J”C ydx + zdy + xdz = J'Ol (41) dt + (504 dt + 2 + 1)5 dt

" 1
~ t"‘
- Jol (10 + 29¢) dt = 101 + 29 ?] =245

0

Likewise, C> can be written in the form
r@))=(010—-19(3,4,5) +1(3,4,0) =(3,4,5 — 5¢)
or 5 y=4 z=5—5t O=str=<1

Then dx = 0 = dy, so

L ydx + zdy + xdz = J:: 3(—=5)dt = —15

Adding the values of these integrals, we obtain

Lydx+zdy+xdz=24.5—15=9.5 E
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If the curve C is given by the vector equation r(¢) = x(¢t)i + y(z) j + z(¢) k, then
T(z) = r'(t)/|r'(z) |, so using Equation 9 we can rewrite Equation 12 in the form

W= jb [F(r(t)) . rl,(t) ] |r'(e)| dt =

-
F(r() - r'(z) dt

. | r ([) ‘ Ju

This integral is often abbreviated as [.F + dr and occurs in other areas of physics as

well. Therefore we make the following definition for the line integral of any continuous

vector field.

[13] Definition Let F be a continuous vector field defined on a smooth curve C
given by a vector function r(z), a =< t =< b. Then the line integral of F along C is

| F-dr=["F@@) r@d=| F-Tds




Figure 13 shows the force field and
the curve in Example 7. The work
done is negative because the field

impedes movement along the curve.
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EXAMPLE 7 Find the work done by the force field F(x, y) = x* i — xy j in moving a
particle along the quarter-circle r(r) = cos i + sinzj, 0 < t < w/2.

SOLUTION Since x = cos t and y = sin t, we have
F(r(r)) = cos’ti — cos t sintj
and r'(t) = —sinti + costj

Therefore the work done is

F F-.dr= Lﬂ/z F(r(1)) - r'(t) dt = ‘nm (—cos’t sint — cos’t sin 7) dt

(=2 cos’t sint) dt =2

w2
/2 cos’r] 2
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42. Find the work done by the force field F(x, y) = x*i + ye*j
on a particle that moves along the parabola x = y* + 1 from

(1,0)to (2, 1).
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The main quorew\

If we think of the gradient vector Vf of a function f of two or three variables as a sort of
derivative of f, then the following theorem can be regarded as a version of the Funda-
mental Theorem for line integrals.

[2] Theorem Let C be a smooth curve given by the vector function r(f),
a <t < b. Let f be a differentiable function of two or three variables whose gra-
dient vector Vf is continuous on C. Then

| VF-dr = fx®) - fr(@)

PROOF OF THEOREM 2 Using Definition 16.2.13, we have

f( Ve g = |’ V£(x(r) - x'(2) dt

rh( 9
W o o)
dax dt dy dt dz dt

Ja

(b d
_ [ Ef(r(t)) dt (by the Chain Rule)

= f(rx(d)) — f(r(a))

The last step follows from the Fundamental Theorem of Calculus (Equation 1). =
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EXAMPLE 1 Find the work done by the gravitational field

mMG
x|’

F(x) = — ) 4

in moving a particle with mass m from the point (3, 4, 12) to the point (2, 2, 0) along a
piecewise-smooth curve C. (See Example 16.1.4.)

SOLUTION From Section 16.1 we know that F 1s a conservative vector field and, in
fact, F = Vf, where
mMG

\/Jc2 b Gk b i

flx,y,2) =

Therefore, by Theorem 2, the work done is
W=| F-dr=| Vf-dr

=f(2,2,0) — (3,4, 12)
mMG mMG ( 1 1 )
M
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(3] Theorem |.F - dris independent of path in D if and only if [.F + dr = 0
for every closed path C in D.




space curves. We assume that D is open, which means that for every point P in D there 1s
a disk with center P that lies entirely in D. (So D doesn’t contain any of its boundary
points.) In addition, we assume that D is connected: this means that any two points in D
can be joined by a path that lies in D.

[4] Theorem Suppose F is a vector field that is continuous on an open connected
region D. If | . F - dr is independent of path in D, then F is a conservative vector
field on D; that is, there exists a function f such that Vf = F.
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IE‘ Theorem If F(x,y) = P(x,y)i + Q(x, y) j is a conservative vector field,
where P and Q have continuous first-order partial derivatives on a domain D, then
throughout D we have

oP 90
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(6] Theorem LetF = Pi + Q j be a vector field on an open simply-connected
region D. Suppose that P and Q have continuous first-order partial derivatives and

P _ 90

throughout D
ady ox

Then F 1s conservative.
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Exercise: 13. Let F(x,y) = (3x* + y?)i + 2xy j and let C be the curve
shown.

(a) Evaluate |.F - dr directly.

(b) Show that F is conservative and find a function f such
that F = Vf.

(c) Evaluate [.F * dr using Theorem 2.

(d) Evaluate _Q'C F - dr by first replacing C by a simpler curve
that has the same initial and terminal points.
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(a) Show that 0P/dy = 0Q/dx.

(b) Show that |.F - dr is not independent of path.
[Hint: Compute | F « drand | F + dr, where C,
and C, are the upper and lower halves of the circle
x* 4+ y?* =1 from (1, 0) to (—1, 0).] Does this
contradict Theorem 6?
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