Th 6/7. Ch 16. Vector Calculus

Vector Fields

2 - Lin'l vector field

1 Definition Let D be a set in \mathbb{R}^2 (a plane region). A **vector field on** \mathbb{R}^2 is a function \mathbf{F} that assigns to each point (x, y) in D a two-dimensional vector $\mathbf{F}(x, y)$.

FIGURE 3
Vector field on \mathbb{R}^2

FIGURE 5 $\mathbf{F}(x, y) = -y \mathbf{i} + x \mathbf{j}$

The best way to picture a vector field is to draw the arrow representing the vector $\mathbf{F}(x, y)$ starting at the point (x, y). Of course, it's impossible to do this for all points (x, y), but we can form a reasonable impression of \mathbf{F} by drawing vectors for a few representative points in D as in Figure 3. Since $\mathbf{F}(x, y)$ is a two-dimensional vector, we can write it in terms of its **component functions** P and Q as follows:

$$\mathbf{F}(x, y) = P(x, y) \,\mathbf{i} + Q(x, y) \,\mathbf{j} = \langle P(x, y), Q(x, y) \rangle$$

or, for short,

$$\mathbf{F} = P\,\mathbf{i}\,+\,Q\,\mathbf{j}$$

Notice that P and Q are scalar functions of two variables and are sometimes called **scalar fields** to distinguish them from vector fields.

EXAMPLE 1 A vector field on \mathbb{R}^2 is defined by $\mathbf{F}(x, y) = -y \mathbf{i} + x \mathbf{j}$. Describe \mathbf{F} by sketching some of the vectors $\mathbf{F}(x, y)$ as in Figure 3.

SOLUTION Since $\mathbf{F}(1,0) = \mathbf{j}$, we draw the vector $\mathbf{j} = \langle 0, 1 \rangle$ starting at the point (1,0) in Figure 5. Since $\mathbf{F}(0,1) = -\mathbf{i}$, we draw the vector $\langle -1, 0 \rangle$ with starting point (0,1). Continuing in this way, we calculate several other representative values of $\mathbf{F}(x,y)$ in the table and draw the corresponding vectors to represent the vector field in Figure 5.

(x, y)	$\mathbf{F}(x, y)$	(x, y)	$\mathbf{F}(x, y)$
(1, 0)	(0, 1)	(-1, 0)	$\langle 0, -1 \rangle$
(2, 2)	$\langle -2, 2 \rangle$	(-2, -2)	$\langle 2, -2 \rangle$
(3, 0)	⟨0, 3⟩	(-3,0)	$\langle 0, -3 \rangle$
(0, 1)	$\langle -1, 0 \rangle$	(0, -1)	$\langle 1, 0 \rangle$
(-2, 2)	$\langle -2, -2 \rangle$	(2, -2)	(2, 2)
(0, 3)	$\langle -3, 0 \rangle$	(0, -3)	$\langle 3, 0 \rangle$

2 Definition Let *E* be a subset of \mathbb{R}^3 . A **vector field on** \mathbb{R}^3 is a function **F** that assigns to each point (x, y, z) in *E* a three-dimensional vector $\mathbf{F}(x, y, z)$.

A vector field **F** on \mathbb{R}^3 is pictured in Figure 4. We can express it in terms of its component functions P, Q, and R as

$$\mathbf{F}(x, y, z) = P(x, y, z) \mathbf{i} + Q(x, y, z) \mathbf{j} + R(x, y, z) \mathbf{k}$$

As with the vector functions in Section 13.1, we can define continuity of vector fields and show that \mathbf{F} is continuous if and only if its component functions P, Q, and R are continuous.

We sometimes identify a point (x, y, z) with its position vector $\mathbf{x} = \langle x, y, z \rangle$ and write $\mathbf{F}(\mathbf{x})$ instead of $\mathbf{F}(x, y, z)$. Then \mathbf{F} becomes a function that assigns a vector $\mathbf{F}(\mathbf{x})$ to a vector \mathbf{x} .

FIGURE 4 Vector field on \mathbb{R}^3

EXAMPLE 2 Sketch the vector field on \mathbb{R}^3 given by $\mathbf{F}(x, y, z) = z \mathbf{k}$.

SOLUTION A sketch is shown in Figure 9. Notice that all vectors are vertical and point upward above the *xy*-plane or downward below it. The magnitude increases with distance from the *xy*-plane.

Gradient field

If f is a scalar function of two variables, recall from Section 14.6 that its gradient ∇f (or grad f) is defined by

$$\nabla f(x, y) = f_x(x, y) \mathbf{i} + f_y(x, y) \mathbf{j}$$

Therefore ∇f is really a vector field on \mathbb{R}^2 and is called a **gradient vector field**. Likewise, if f is a scalar function of three variables, its gradient is a vector field on \mathbb{R}^3 given by

$$\nabla f(x, y, z) = f_x(x, y, z) \mathbf{i} + f_y(x, y, z) \mathbf{j} + f_z(x, y, z) \mathbf{k}$$

Conversative vector field

A vector field \mathbf{F} is called a **conservative vector field** if it is the gradient of some scalar function, that is, if there exists a function f such that $\mathbf{F} = \nabla f$. In this situation f is called a **potential function** for \mathbf{F} .

Not all vector fields are conservative, but such fields do arise frequently in physics. For example, the gravitational field **F** in Example 4 is conservative because if we define

$$f(x, y, z) = \frac{mMG}{\sqrt{x^2 + y^2 + z^2}}$$

then

$$\nabla f(x, y, z) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

$$= \frac{-mMGx}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{i} + \frac{-mMGy}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{j} + \frac{-mMGz}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{k}$$

$$= \mathbf{F}(x, y, z)$$

In Sections 16.3 and 16.5 we will learn how to tell whether or not a given vector field is conservative.

EXAMPLE 4 Newton's Law of Gravitation states that the magnitude of the gravitational force between two objects with masses *m* and *M* is

$$|\mathbf{F}| = \frac{mMG}{r^2}$$

where r is the distance between the objects and G is the gravitational constant. (This is an example of an inverse square law; see Section 1.2.) Let's assume that the object with mass M is located at the origin in \mathbb{R}^3 . (For instance, M could be the mass of the earth and the origin would be at its center.) Let the position vector of the object with mass m be $\mathbf{x} = \langle x, y, z \rangle$. Then $r = |\mathbf{x}|$, so $r^2 = |\mathbf{x}|^2$. The gravitational force exerted on this second object acts toward the origin, and the unit vector in this direction is

$$-\frac{\mathbf{x}}{|\mathbf{x}|}$$

Therefore the gravitational force acting on the object at $\mathbf{x} = \langle x, y, z \rangle$ is

$$\mathbf{F}(\mathbf{x}) = -\frac{mMG}{|\mathbf{x}|^3} \mathbf{x}$$

39–40 Flow Lines The *flow lines* (or *streamlines*) of a vector field are the paths followed by a particle whose velocity field is the given vector field. Thus the vectors in a vector field are tangent to the flow lines.

- (a) Sketch the vector field $\mathbf{F}(x, y) = \mathbf{i} + x \mathbf{j}$ and then sketch some flow lines. What shape do these flow lines appear to have?
- (b) If parametric equations of the flow lines are x = x(t), y = y(t), what differential equations do these functions satisfy? Deduce that dy/dx = x.
- (c) If a particle starts at the origin in the velocity field given by **F**, find an equation of the path it follows.

(c)
$$\chi(0) = 0$$
, $\gamma(0) = 0$
=) $\chi(t) = t$, $\gamma(t) = \frac{1}{2}t^{2} = \frac{1}{2}\chi^{2}$

8.
$$\mathbf{F}(x, y) = \frac{y \, \mathbf{i} - x \, \mathbf{j}}{\sqrt{x^2 + y^2}}$$

26.
$$f(s,t) = \sqrt{2s + 3t}$$

$$\int_{s} (s, t) = \frac{1}{Z} \frac{2}{\sqrt{2s+3t}} = \frac{1}{\sqrt{2s+3t}}$$

$$\int_{t} (s, t) = \frac{1}{Z} \frac{3}{\sqrt{2s+3t}} = \frac{3/2}{\sqrt{2s+3t}}$$

$$\nabla \int_{t} (s, t) = \frac{1}{\sqrt{2s+3t}} i + \frac{3/2}{\sqrt{2s+3t}} j$$