Change of variables in multiple integrals

· Case of double integral

Comparison of two formulas:

In 1- dim'l case:

$$\int_a^b f(x) \ dx = \int_c^d f(g(u)) g'(u) \ du$$

where x = g(u) and a = g(c), b = g(d). Another way of writing Formula 1 is as follows:

$$\int_{a}^{b} f(x) dx = \int_{c}^{d} f(x(u)) \left| \frac{dx}{du} \right| du$$

In Z-din'l case: polor wordinate

We have already seen an example of a change of variables for double integrals: conversion to polar coordinates. The new variables r and θ are related to the old variables x and y by the equations

$$x = r \cos \theta$$
 $y = r \sin \theta$

and the change of variables formula (15.3.2) can be written as

$$\iint\limits_R f(x, y) dA = \iint\limits_S f(r\cos\theta, r\sin\theta) r dr d\theta$$

where S is the region in the $r\theta$ -plane that corresponds to the region R in the xy-plane.

Change of variables makes the computation much more easier!

In general, $R \in \mathbb{R}^2$ is a region, $S \in \mathbb{R}^2$ is another region. Suppose T is a map such that it maps $S \neq R$

and S is a "good shope", then we want to integrate over S, not R, so

$$\iint f(x,y) dA = \iint f(x(u,v), y(u,v)) \cdot | \int dA' dA = \prod dA$$
Some factor!

changing factors

EXAMPLE 1 A transformation is defined by the equations

$$x = u^2 - v^2 \qquad y = 2uv$$

Find the image of the square $S = \{(u, v) \mid 0 \le u \le 1, 0 \le v \le 1\}$.

SOLUTION The transformation maps the boundary of S into the boundary of the image. So we begin by finding the images of the sides of S. The first side, S_1 , is given by v=0 $(0 \le u \le 1)$. (See Figure 2.) From the given equations we have $x=u^2$, y=0, and so $0 \le x \le 1$. Thus S_1 is mapped onto the line segment from (0,0) to (1,0) in the xy-plane. The second side, S_2 , is u=1 $(0 \le v \le 1)$ and, putting u=1 in the given equations, we get

$$x = 1 - v^2 \qquad y = 2v$$

Eliminating v, we obtain

$$x = 1 - \frac{y^2}{4} \qquad 0 \le x \le 1$$

which is part of a parabola. Similarly, S_3 is given by v = 1 ($0 \le u \le 1$), whose image is the parabolic arc

Finally, S_4 is given by u = 0 ($0 \le v \le 1$) whose image is $x = -v^2$, y = 0, that is, $-1 \le x \le 0$. (Notice that as we move around the square in the counterclockwise direction, we also move around the parabolic region in the counterclockwise direction.) The image of S is the region R (shown in Figure 2) bounded by the x-axis and the parabolas given by Equations 4 and 5.

FIGURE 2

key: find the image of the boundary

How to find this factor?

Let's look at the local behavior of the transformation map T

Now let's see how a change of variables affects a double integral. We start with a small rectangle S in the uv-plane whose lower left corner is the point (u_0, v_0) and whose dimensions are Δu and Δv . (See Figure 3.)

The image of S is a region R in the xy-plane, one of whose boundary points is $(x_0, y_0) = T(u_0, v_0)$. The vector

$$\mathbf{r}(u, v) = g(u, v) \mathbf{i} + h(u, v) \mathbf{j}$$

$$\Delta A' = \text{area of } S, \quad \Delta A = \text{area of } R$$

$$= \Delta u \cdot \Delta v$$

Let's try to approximate DA

Rough idea: approximate R be parallelgram formed by tongent vectors
$$\Delta A \approx \left| \left(\Gamma(u_0 + \Delta u, V_0) - \Gamma(u_0, V_0) \right) \times \left(\Gamma(u_0, V_0 + \Delta v) - \Gamma(u_0, V_0) \right) \right|$$

$$\approx \left| \Gamma_{u}'(u_0, V_0) \cdot \Delta u \times \Gamma_{v}'(u_0, V_0) \cdot \Delta v \right|$$

$$= \left| \Gamma_{u}'(u_0, V_0) \times \Gamma_{v}'(u_0, V_0) \right| \cdot \Delta u \Delta v$$

$$\Gamma_{u}'(u_{o}, v_{o}) = \lim_{\Delta u \to 0} \frac{\Gamma(u_{o} + \Delta u, v_{o}) - \Gamma(u_{o}, v_{o})}{\Delta u}$$
both are vertex:
$$\Gamma_{v}'(u_{o}, v_{o}) = \lim_{\Delta v \to 0} \frac{\Gamma(u_{o}, v_{o} + \Delta v) - \Gamma(u_{o}, v_{o})}{\Delta v}$$

Since
$$\Gamma(u,v) = \begin{pmatrix} \chi(u,v), & \chi(u,v) \end{pmatrix}$$
, we get
$$\Gamma_{u}'(u_{o},v_{o}) = \begin{pmatrix} \frac{\partial x}{\partial u}, & \frac{\partial y}{\partial u} \end{pmatrix} \qquad \Gamma_{v}'(u_{o},v_{o}) = \begin{pmatrix} \frac{\partial x}{\partial v}, & \frac{\partial y}{\partial v} \end{pmatrix}$$
then
$$\Gamma_{u}'(u_{o},v_{o}) \times \Gamma_{v}'(u_{o},v_{o}) = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac$$

and then

$$\left| C_{\mathsf{u}}^{'}(\mathsf{u}_{\mathsf{o}},\mathsf{v}_{\mathsf{o}}) \times C_{\mathsf{v}}^{'}(\mathsf{u}_{\mathsf{o}},\mathsf{v}_{\mathsf{o}}) \right| = \left| \frac{\partial x}{\partial \mathsf{u}} \frac{\partial y}{\partial \mathsf{v}} - \frac{\partial y}{\partial \mathsf{u}} \frac{\partial x}{\partial \mathsf{v}} \right| \left(\mathsf{u}_{\mathsf{o}},\mathsf{v}_{\mathsf{o}} \right)$$

7 Definition The **Jacobian** of the transformation T given by x = g(u, v) and y = h(u, v) is

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

With this notation we can use Equation 6 to give an approximation to the area ΔA of R:

$$\Delta A \approx \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \Delta u \, \Delta v$$

where the Jacobian is evaluated at (u_0, v_0) .

Next we divide a region S in the uv-plane into rectangles S_{ij} and call their images in the xy-plane R_{ij} . (See Figure 6.)

Applying the approximation (8) to each R_{ij} , we approximate the double integral of f over R as follows:

$$\iint_{R} f(x, y) dA \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{i}, y_{j}) \Delta A$$

$$\approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(g(u_{i}, v_{j}), h(u_{i}, v_{j})) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \Delta u \Delta v$$

where the Jacobian is evaluated at (u_i, v_j) . Notice that this double sum is a Riemann sum for the integral

$$\iint\limits_{S} f(g(u, v), h(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv$$

The foregoing argument suggests that the following theorem is true. (A full proof is given in books on advanced calculus.)

9 Change of Variables in a Double Integral Suppose that T is a C^1 transformation whose Jacobian is nonzero and that T maps a region S in the uv-plane onto a region R in the uv-plane. Suppose that uv-plane on uv-plane o

$$\iint\limits_R f(x,y) \, dA = \iint\limits_S f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv$$

Review of Polar wordinate

FIGURE 7

As a first illustration of Theorem 9, we show that the formula for integration in polar coordinates is just a special case. Here the transformation T from the $r\theta$ -plane to the xy-plane is given by

$$x = g(r, \theta) = r \cos \theta$$
 $y = h(r, \theta) = r \sin \theta$

and the geometry of the transformation is shown in Figure 7: T maps an ordinary rectangle in the $r\theta$ -plane to a polar rectangle in the xy-plane. The Jacobian of T is

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r\cos^2\theta + r\sin^2\theta = r > 0$$

Thus Theorem 9 gives

$$\iint_{R} f(x, y) dx dy = \iint_{S} f(r \cos \theta, r \sin \theta) \left| \frac{\partial(x, y)}{\partial(r, \theta)} \right| dr d\theta$$
$$= \int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r dr d\theta$$

which is the same as Formula 15.3.2.

Examples:

FIGURE 7

The polar coordinate transformation

FIGURE 8

which is the same as Formula 15.3.2.

EXAMPLE 2 Use the change of variables $x = u^2 - v^2$, y = 2uv to evaluate the integral $\iint_R y \, dA$, where R is the region bounded by the x-axis and the parabolas $y^2 = 4 - 4x$ and $y^2 = 4 + 4x$, $y \ge 0$.

SOLUTION The region R is pictured in Figure 8. It is the region from Example 1 (see Figure 2); in that example we discovered that T(S) = R, where S is the square $[0, 1] \times [0, 1]$. Indeed, the reason for making the change of variables to evaluate the integral is that S is a much simpler region than R. First we need to compute the Tacobian:

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 2u & -2v \\ 2v & 2u \end{vmatrix} = 4u^2 + 4v^2 > 0$$

Therefore, by Theorem 9,

$$\iint_{R} y \, dA = \iint_{S} 2uv \left| \frac{\partial(x, y)}{\partial(u, v)} \right| dA = \int_{0}^{1} \int_{0}^{1} (2uv)4(u^{2} + v^{2}) \, du \, dv$$

$$= 8 \int_{0}^{1} \int_{0}^{1} (u^{3}v + uv^{3}) \, du \, dv = 8 \int_{0}^{1} \left[\frac{1}{4}u^{4}v + \frac{1}{2}u^{2}v^{3} \right]_{u=0}^{u=1} \, dv$$

$$= \int_{0}^{1} (2v + 4v^{3}) \, dv = \left[v^{2} + v^{4} \right]_{0}^{1} = 2$$

SOLUTION Since it isn't easy to integrate $e^{(x+y)/(x-y)}$, we make a change of variables suggested by the form of this function:

$$10 u = x + y v = x - y$$

These equations define a transformation T^{-1} from the xy-plane to the uv-plane. Theorem 9 talks about a transformation T from the uv-plane to the xy-plane. It is obtained by solving Equations 10 for x and y:

11
$$x = \frac{1}{2}(u+v)$$
 $y = \frac{1}{2}(u-v)$

The Jacobian of T is

$$\frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{2}$$

To find the region S in the uv-plane corresponding to R, we note that the sides of R lie on the lines

$$y = 0$$
 $x - y = 2$ $x = 0$ $x - y = 1$

and, from either Equations 10 or Equations 11, the image lines in the uv-plane are

$$u = v$$
 $v = 2$ $u = -v$ $v = 1$

Thus the region S is the trapezoidal region with vertices (1, 1), (2, 2), (-2, 2), and (-1, 1) shown in Figure 9. Since

$$S = \left\{ (u, v) \mid 1 \le v \le 2, \ -v \le u \le v \right\}$$

Theorem 9 gives

$$\iint_{R} e^{(x+y)/(x-y)} dA = \iint_{S} e^{u/v} \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

$$= \int_{1}^{2} \int_{-v}^{v} e^{u/v} (\frac{1}{2}) du dv = \frac{1}{2} \int_{1}^{2} \left[v e^{u/v} \right]_{u=-v}^{u=v} dv$$

$$= \frac{1}{2} \int_{1}^{2} (e - e^{-1}) v dv = \frac{3}{4} (e - e^{-1})$$

FIGURE 9

$$\sum_{\substack{l = 1 \\ l \neq l}} | l = \chi + \gamma, \quad z = \chi - \gamma =) \quad y = \chi - z \quad k \quad \chi = \frac{u}{z} + i \quad \epsilon(o, c)$$

$$S_2: U+V=\circ, U\in [-2,+] \Rightarrow U+V=2x=\circ, x=\circ$$

$$y=\frac{U-V}{2}=U\in (-2,+)$$

Change of variables in triple integrals

There is a similar change of variables formula for triple integrals. Let T be a one-to-one transformation that maps a region S in uvw-space onto a region R in xyz-space by means of the equations

$$x = g(u, v, w)$$
 $y = h(u, v, w)$ $z = k(u, v, w)$

The **Jacobian** of *T* is the following 3×3 determinant:

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Under hypotheses similar to those in Theorem 9, we have the following formula for triple integrals:

$$\iiint\limits_R f(x,y,z) \ dV = \iiint\limits_S f(x(u,v,w),y(u,v,w),z(u,v,w)) \ \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| \ du \ dv \ dw$$

Exercises:

6. S is the disk given by $u^2 + v^2 \le 1$; x = au, y = bv

$$u = \frac{x}{a}$$
, $v = \frac{y}{b}$, then

$$\frac{\chi^2}{a^2} + \frac{y^2}{b^2} \leq 1$$

10. *R* is bounded by the hyperbolas y = 1/x, y = 4/x and the lines y = x, y = 4x in the first quadrant

Sketch R:

$$xy = 1$$

$$xy = 4$$

$$\frac{y}{x} = 1$$

$$\frac{y}{x} = 4$$

$$\frac{3}{x} = 1$$

$$\frac{y}{x} = 4$$

hand let
$$u = xy$$
, $v = \frac{y}{x} = x = \sqrt{\frac{u}{v}}$, $y = \sqrt{uv}$

Review of Ch. 15

Double integrals

Triple Integrals

Definition:

over rectangles

over general region type I type I

over rectangular boxes

over general region type 2 type 3

Changing of variables

Polar coordinate dA = rdrdo

cylindrical coordinate dv=rdzdrdo
spherical coordinate dv=p*sinddpdddd

Exercise

7.
$$\int_0^{\pi} \int_0^1 \int_0^{\sqrt{1-y^2}} y \sin x \, dz \, dy \, dx$$

$$= \int_{0}^{\pi} \sin x \, dx \cdot \int_{0}^{1} y \sqrt{y} \, dy$$

$$= 2 \int_{0}^{1} y \sqrt{y} \, dy = \int_{0}^{1} \sqrt{1-u} \, du = -\frac{2}{3} \left(|-u|^{\frac{5}{2}} \right)^{\frac{1}{2}} = \frac{2}{3}$$

$$\int_{0}^{1} \int_{0}^{x} \cos(x^{2}) \, dy \, dx \qquad \text{or try } \int_{0}^{1} \int_{y}^{1} \cos(x^{2}) \, dx \, dy$$

$$= \int_{0}^{1} x \cos(x^{2}) \, dx$$

$$\frac{u=x^2}{2}\int_0^1 \cos(u) du = \frac{1}{2} \sin(u) \Big|_0^1 = \frac{1}{2} \sin(1)$$

20.
$$\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{ye^{x^{2}}}{x^{3}} dx dy$$

$$= \int_{0}^{1} \int_{0}^{x^{2}} \frac{ye^{x^{2}}}{x^{3}} dy dx$$

$$= \int_{0}^{1} \int_{0}^{x^{2}} \frac{ye^{x^{2}}}{x^{2}} dy dx$$

$$= \int_{0}^{1} \int_{0}^{x^{2}} xe^{x^{2}} dx = \frac{1}{4} \int_{0}^{1} e^{x^{2}} dx = \frac{1}{4} (e^{-1})$$

14. Identify the surfaces whose equations are given.

(a)
$$\theta = \pi/4$$

(b)
$$\phi = \pi/4$$

(a)
$$\int \sin \phi \cos \theta = \int \sin \phi \sin \theta$$
 $\int x = g$
 $\int x = g$

17. Describe the region whose area is given by the integral

$$\int_0^{\pi/2} \int_0^{\sin 2\theta} r \, dr \, d\theta$$

$$0 \le r \le \sin 2\theta$$
, $0 \le \theta \le \frac{\pi}{2}$

$$0 \in \delta \in \frac{\pi}{2}$$

$$\int z^{2} = 2 \sin \theta \cos \theta$$

$$= \frac{2 \times y}{x^{2} + y^{2}}$$

$$= \frac{2 \times y}{x^{2} + y^{2}}$$

$$= \frac{2 \times y}{x^{2} + y^{2}}$$

58. (a) Evaluate

$$\iint\limits_{D} \frac{1}{(x^2+y^2)^{n/2}} dA$$

where n is an integer and D is the region bounded by the circles with center the origin and radii r and R, 0 < r < R.

- (b) For what values of *n* does the integral in part (a) have a limit as $r \to 0^+$?
- (c) Find

$$\iiint\limits_{E} \frac{1}{(x^2 + y^2 + z^2)^{n/2}} \, dV$$

where E is the region bounded by the spheres with center the origin and radii r and R, 0 < r < R.

(d) For what values of n does the integral in part (c) have a limit as $r \rightarrow 0^+$?

(a)
$$\int_{0}^{2\pi} \frac{1}{(x^{2}+y^{2})^{\frac{n}{2}}} dA$$

$$= \int_{0}^{2\pi} \int_{r}^{R} \frac{1}{r^{n}} r dr d\theta$$

$$= 2\pi \cdot \frac{r^{2-n}}{2-n} \Big|_{r}^{R}$$

$$= \frac{2\pi}{n-2} \left(\frac{1}{r^{n-2}} - \frac{1}{R^{n-2}} \right)$$
(b) $n-2 \leq 0 \in n \leq 2$
(c)
$$\int_{0}^{2\pi} \frac{1}{(x^{2}+y^{2}+z^{2})^{\frac{n}{2}}} dV$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{r}^{R} \frac{1}{r^{n-2}} r^{n} d\rho$$

$$= 2\pi \cdot 2 \cdot \int_{r}^{R} \frac{1}{r^{n-2}} d\rho$$

$$= \frac{4\pi}{n-3} \left(\frac{1}{r^{n-2}} - \frac{1}{R^{n-2}} \right)$$

 $(d) n-3 \leq 0 \Leftrightarrow n \leq 3$

5. The double integral $\int_0^1 \int_0^1 \frac{1}{1-xy} dx dy$ is an improper integral and could be defined as the limit of double integrals over the rectangle $[0, t] \times [0, t]$ as $t \to 1^-$. But if we expand th integrand as a geometric series, we can express the integral as the sum of an infinite series. Show that

$$\int_0^1 \int_0^1 \frac{1}{1 - xy} \, dx \, dy = \sum_{n=1}^\infty \frac{1}{n^2}$$

6. Leonhard Euler was able to find the exact sum of the series in Problem 5. In 1736 he proved that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

In this problem we ask you to prove this fact by evaluating the double integral in Problem 5. Start by making the change of variables

$$x = \frac{u - v}{\sqrt{2}} \qquad \qquad y = \frac{u + v}{\sqrt{2}}$$

This gives a rotation about the origin through the angle $\pi/4$. You will need to sketch the corresponding region in the uv-plane.

[*Hint*: If, in evaluating the integral, you encounter either of the expressions $(1 - \sin \theta)/\cos \theta$ or $(\cos \theta)/(1 + \sin \theta)$, you might like to use the identity $\cos \theta = \sin((\pi/2) - \theta)$ and the corresponding identity for $\sin \theta$.]

5.
$$\int_{0}^{1} \int_{0}^{1} \frac{1}{1-x^{2}} dx dy = \int_{0}^{1} -\frac{1}{4} |n(1-xy)|^{\frac{1}{2}} dy = \int_{0}^{1} -\frac{1}{4} |n(1-y)| dy$$

$$= \int_{0}^{1} \int_{0}^{\infty} \sum_{N=-\infty}^{\infty} (xy)^{N} dx dy = \int_{0}^{1} \frac{1}{1-x^{2}} dy = \int_{0}^{1} \int_{0}^{\infty} \sum_{N=-\infty}^{\infty} \frac{1}{N} dy = \int_{0}^{\infty} \int_{0}^{1} \frac{1}{N} dy = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \frac{1}{N} dy = \int_{$$