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- Case of doubly infejral

Cow/ua/('/on af time )erw{cl"
In 1-dimt case:

[1] "bf(x) dx = J:[f(g(u))g'(u) du

Ja

where x = g(u) and a = g(c), b = g(d). Another way of writing Formula 1 is as follows:

2] |7 ax = jl,df(x(u))( %d
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We have already seen an example of a change of variables for double integrals: conver- L )
sion to polar coordinates. The new variables r and 6 are related to the old variables x D Cha "17 " ﬁﬁfﬂ?
and y by the equations

x =rcosf y = rsinf
and the change of variables formula (15.3.2) can be written as

” flx,y)dA = H f(rcos@, rsinf) @;;;9

R S

where § is the region in the r6-plane that corresponds to the region R in the xy-plane.
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EXAMPLE 1 A transformation is defined by the equations
x=ut—-1 y = 2uv
Find the image of the square S = {(u,v) [0 <su <1, 0<0v <1}

SOLUTION The transformation maps the boundary of S into the boundary of the image.
So we begin by finding the images of the sides of S. The first side, S, is given by v = 0
(0 < u =< 1). (See Figure 2.) From the given equations we have x = u?, y = 0, and
s0 0 = x = 1. Thus S, is mapped onto the line segment from (0, 0) to (1, 0) in the
xy-plane. The second side, S»,isu = 1 (0 < v =< 1) and, putting # = 1 in the given
equations, we get

x=1-1 y=2

Eliminating », we obtain
@] x=1-L osx=1
4

which is part of a parabola. Similarly, Ssis given by v = 1 (0 < u =< 1), whose image
is the parabolic arc

[5] x=%—l —-1<sx<0

Finally, S. is givenby u = 0 (0 < v < 1) whose image is x = —v% y = 0, that is,
—1 = x = 0. (Notice that as we move around the square in the counterclockwise
direction, we also move around the parabolic region in the counterclockwise direction.)
The image of § is the region R (shown in Figure 2) bounded by the x-axis and the
parabolas given by Equations 4 and 5. 8]
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Let's look at Hua lacal behavior of the (‘mm,@rmat’on rap T

Now let’s see how a change of variables affects a double integral. We start with a
small rectangle S in the uv-plane whose lower left corner is the point (u, vy) and whose
dimensions are Au and Av. (See Figure 3.)
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The image of S is a region R in the xy-plane, one of whose boundary points is
(X(). )'1)) = T(ll(), U()). The vector

r(u,v) = glu, v)i + h(u, v) j
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Definition The Jacobian of the transformation 7' given by x = g(u, v) and

y = h(u, v) is
N
dxy) |0 0| _oxdy Oxdy

ou,v) dy dy ou v v du
du Jdv

With this notation we can use Equation 6 to give an approximation to the area AA
of R:

AA = M‘Au&)

(u, v)

where the Jacobian is evaluated at (uo, vo).



Next we divide a region § in the uv-plane into rectangles S;; and call their images in
the xy-plane R;;. (See Figure 6.)
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Applying the approximation (8) to each R;;, we approximate the double integral of f
over R as follows:

m n

[[fryda=~3 3 fx,y) A4
R

i=1 j=1

a(x, y)
a(u, v)

Au Av

= é éf(g(ui, vj), h(u;, vj))

where the Jacobian is evaluated at (u;, v;). Notice that this double sum is a Riemann sum
for the integral

a(x, y)

du d
(u, v) wav

([ £(gtu, 0, i, )

S

The foregoing argument suggests that the following theorem is true. (A full proof is
given in books on advanced calculus.)

[9] Change of Variables in a Double Integral Suppose that T is a C' transfor-
mation whose Jacobian is nonzero and that 7 maps a region § in the uv-plane onto
aregion R in the xy-plane. Suppose that f is continuous on R and that R and § are
type I or type II plane regions. Suppose also that 7" is one-to-one, except perhaps
on the boundary of S. Then

a(x, y)

aGE ) du dv

[ £ da = [] £, 0), v, 0)
R N




Revfew of Po/a( coom([nate

01 - As a first illustration of Theorem 9, we show that the formula for integration in polar
Bt——— = coordinates is just a special case. Here the transformation 7" from the r6-plane to the
xy-plane is given by
r=a S r=b .
x =g(r,0) = rcosé y = h(r,0) = rsinf
at———
1 0=a | and the geometry of the transformation is shown in Figure 7: T maps an ordinary rect-
1 I angle in the r6-plane to a polar rectangle in the xy-plane. The Jacobian of 7 is
0 a b r
ox
a(x,y) Jar  adb cosfl  —rsinf . g
T — = . = | . =rcos O + rsind=r=>0
a(r,0) dy dy sin rcosf
, dar a6
)
r=b .
0 Thus Theorem 9 gives
. & ) a(x, y)
/ “f(x,_v)dxd_v= “f(rcost‘),rsmt‘)) ——=| drdf
J) JJ a(r,6)
r=a R S
3
LN o (B [P .
P B \a = . . f(rcos®, rsin®) rdr df
0 t Joo Ja
which is the same as Formula 15.3.2.
FIGURE 7
E X a t,w |
FIGURE 7 whnicn 18 tne same as rormula 135.5.2.
The polar coordinate transformation EXAMPLE 2 Use the change of variables x = u® — %, y = 2uv to evaluate the

integral j'j'k vy dA, where R is the region bounded by the x-axis and the parabolas
y’=4 —4xandy’ =4 + 4x,y = 0.

y SOLUTION The region R is pictured in Figure 8. It is the region from Example 1
(see Figure 2); in that example we discovered that 7(S) = R, where S is the square
[0, 17 X [0, 17. Indeed, the reason for making the change of variables to evaluate the
integral is that S is a much simpler region than R. First we need to compute the

Jacobian:
o
alx,y) u v 2u —2v
-1,0)1 Tio) x 2 = = 4u’ + 402> 0
; ) 9 bl # (u, v) ay Ay 2v 2u % 4
FIGURE 8 o o
Therefore, by Theorem 9,
op e a(x, y 1 p N N
([ yaa= [ 20 | 222 ga = (" " uopa(a2 + o) du o
+ o a(u, v) Jo Jo

u=1

=38 '01 'UI (v + uv’) dudv = 8 -"01 [J;u‘v - l:uzv’]“_u dv

= “‘01 2v + 40*)dv = [v2 + 04]:1= 2 m



EXAMPLE 3 Evaluate the integral ([, ¢***/“"" dA, where R is the trapezoidal region
with vertices (1, 0), (2, 0), (0, —2), and (0, —1).

SOLUTION Since it isn’t easy to integrate e "/, we make a change of variables
suggested by the form of this function:

i =xxy Y=y

These equations define a transformation 7' from the xy-plane to the uv-plane. Theo-
rem 9 talks about a transformation 7" from the uv-plane to the xy-plane. It is obtained
by solving Equations 10 for x and y:

[E x=_l—(u+ v) y=%(u— v)

The Jacobian of T is

ax ax
alx,y) du v 21 % o
“arraaN = I8 1| = 72
au, v) dy  dy 5 2
du dv
v To find the region S in the uv-plane corresponding to R, we note that the sides of R
(-2,2) Silv=2 (2,2 lie on the lines
u=-g, S @f” y=0 x—y=2 x=0 x—y=1
=Lh s (L0 and, from either Equations 10 or Equations 11, the image lines in the uv-plane are
=
0 u u=un v=2 U= —v v=1

Thus the region S is the trapezoidal region with vertices (1, 1), (2, 2), (=2, 2), and
(—1, 1) shown in Figure 9. Since

S= {(u,v)|lSv$2, —v$u$v}

Theorem 9 gives

d(x, y)

du d
) u dv
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Czlanje ot vaviably in Trf/v& /'nfejra}:

There is a similar change of variables formula for triple integrals. Let 7 be a one-to-one
transformation that maps a region S in uvw-space onto a region R in xyz-space by means
of the equations

x = g(u, v, w) y = h(u, v, w) z=k(u,v, w)

The Jacobian of T is the following 3 X 3 determinant:

ox ox ox

Ju Jdv  Jw

2] 0ny.2) _ |9 & 9y
a(u, v, w) du Jdv  Jw
9z 0z 0z

Ju Jdv Jw

Under hypotheses similar to those in Theorem 9, we have the following formula for triple
integrals:

a(x, y, z)

du dv dw
au, v, w)

[13] J:“ f(x,y,2)dV =ﬁ"f(x(u, v, w), y(u, v, w), z(u, v, w))
R s




Exeru‘ses .

6. Sisthe disk givenby u* + v* < 1; x=au, y = bv
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10. R is bounded by the hyperbolas y = 1/x, y = 4/x and the
lines y = x, y = 4x in the first quadrant

ﬂetzfﬂ R :




Review of Chis

D{Hm\'\ﬂ‘ﬂ"\ :

Double ihf(7’m/5 Tri/;/e Infojrnlf

over rf(faﬂju/ar bo xes

over NC'{'nn]/e.f
U/ ty,ae I U/ ‘ fYPe 1
over jenero./ rf’710r) type ¢
type 3

dver jenerﬁ/ f\"jl'“' <
fype T

cylindiical &Mrl{/{vretc o(lV: fﬂ(ao(rﬂ(&

Clmnyj‘n ﬂ')L . (1 J
) | = 8
ety Pl o A cd phecicel e V- g iy do
Erereive m (1 (V12
y A J ‘ " ysinxdzdy dx
0 JO JO

1l

{nsinxc&x' j:' y{ry J'ﬁ‘

; Jalgm”[? “;}_J( mJM=_§(,_u)é

I z
3
)

"

Jol fo\ cos(x®) dydx o try fﬁl L\ Cos(x*) dx 4 4

Cl'\q‘" verla
7 N

[
:g xmsmz)/y

a

|
= 5 Sin(1)

I
N~

0

w= % '
) E MS(M):/{M = lz Sin(n)



14. Identify the surfaces whose equations are given.

(a) 0 =m/4 (b) & =m/4
() rs.'nzf w0 = (S;mc{’ Y, Q) [5 = m
[ U — 0
g x — g C“’“}' - eg'\”‘)’
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17. Describe the region whose area is given by the integral
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58. (a) Evaluate (a) \U —‘T ”(/‘\

1 xl oY) 2
I} Gy a ,
D
where 7 is an integer and D is the region bounded by w R o(
the circles with center the origin and radii r and R, = 'S‘ J red
0<r<R. ° r
(b) For what values of n does the integral in part (a) have a 0 | R
limitas r — 072 < )w - r
(¢) Find 2=n i
1
Hj (7> g% 4 e av _&m ( o _ l_)
E n—z [ Y Rh—\-

where E is the region bounded by the spheres with
center the origin and radii r and R, 0 < r < R. (b) n2 < o &) ns2

(d) For what values of n does the integral in part (c) have
alimitas r — 072 |
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5. The double integral “(,l “01

l—X}

the limit of double integrals over the rectangle [0, 1] X [0, ] ast — 1~
integrand as a geometric series, we can express the integral as the sum of an infinite series.

Show that

that

1
1 —xy

1l 1
Ju Jo 1 — xy

o

2
n=1 N

1

dxdy =2 —

a:

N |

n=1 N~

2

6

In this problem we ask you to prove this fact by evaluating the double integral in Prob-
lem 5. Start by making the change of variables

u—v

2

X=

'\’

u-+v

2

dx dy is an improper integral and could be defined as

This gives a rotation about the origin through the angle /4. You will need to sketch the
corresponding region in the uv-plane.
[Hint: If, in evaluating the integral, you encounter either of the expressions
(I — sin0)/cos 0 or (cos 0)/(1 + sin @), you might like to use the identity
cos 6 = sin((7r/2) — 6) and the corresponding identity for sin 6.]
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. But if we expand th

. Leonhard Euler was able to find the exact sum of the series in Problem 5. In 1736 he provec



