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Recall © Green's theorem
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Stokes’ theorem is a j(nerafizat.'on of Green’s theorem

Figure 1 shows an oriented surface with unit normal vector n. The orientation of §
induces the positive orientation of the boundary curve C shown in the figure. This
means that if you walk in the positive direction around C with your head pointing in the
direction of n, then the surface will always be on your left.

Stokes’Theorem Let S be an oriented piecewise-smooth surface that is bounded
by a simple, closed, piecewise-smooth boundary curve C with positive orientation.
Let F be a vector field whose components have continuous partial derivatives on
an open region in R that contains S. Then
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In fact, in the special case where the surface § is flat and lies in the xy-plane with
upward orientation, the unit normal is Kk, the surface integral becomes a double integral,
and Stokes’ Theorem becomes
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This is precisely the vector form of Green’s Theorem given in Equation 16.5.12. Thus we
see that Green’s Theorem is really a special case of Stokes’ Theorem.
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where the partial derivatives of P, Q, and R are evaluated at (x, y, g(x, y)). If
x = x(1) y = y() a<t<»h
is a parametric representation of C, then a parametric representation of C is
x=x() y=y@ z=gk@),y®) astsb
This allows us, with the aid of the Chain Rule, to evaluate the line integral as follows:
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where we have used Green’s Theorem in the last step. Then, using the Chain Rule again
and remembering that P, O, and R are functions of x, y, and z and that z is itself a func-
tion of x and y, we get
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Four of the terms in this double integral cancel and the remaining six terms can be
arranged to coincide with the right side of Equation 2. Therefore

‘C F-dr= H curl F - dS ®
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EXAMPLE 1 Evaluate | F - dr, where F(x,y, z) = —y*i + xj + z’k and C is the
curve of intersection of the plane y + z = 2 and the cylinder x> + y* = 1. (Orient C to
be counterclockwise when viewed from above.)

SOLUTION The curve C (an ellipse) is shown in Figure 3. Although [ F « dr could be
evaluated directly, it’s easier to use Stokes’ Theorem. We first compute

i J k
d d d

— —|(=010+2yk
ox Jdy oz
o i A i
Stokes’ Theorem allows us to choose any (oriented, piecewise-smooth) surface with
boundary curve C. Among the many possible such surfaces, the most convenient
choice is the elliptical region S in the plane y + z = 2 that is bounded by C. If we
orient S upward, then C has the induced positive orientation. The projection D of §
onto the xy-plane is the disk x* + y* < 1 and so using Equation 16.7.10 with
z=g(x,y) =2 — y, we have
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EXAMPLE 2 Use Stokes’ Theorem to compute the integral [{, curl F - dS, where
F(x,y,z) = xzi+ yzj + xykand S is the part of the sphere x*> + y* + z> = 4 that
lies inside the cylinder x* + y*> = 1 and above the xy-plane. (See Figure 4.)

SOLUTION 1 To find the boundary curve C we solve the equations x> + y? + z* = 4

and x* + y* = 1. Subtracting, we get z> = 3 and so z = V3 (since z > 0). Thus C is
the circle given by the equations x> + y* = 1,z = /3. A vector equation of C is

r()) =costi+sintj++ 3k O0=<r<2w

FIGURE 4 SO r'(t) = —sinti + costj
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SOLUTION 2 Let S, be the disk in the plane z = /3 inside the cylinder x> + y*> = 1, as
shown in Figure 5. Since S, and S have the same boundary curve C, it follows by
Stokes’ Theorem that

H curl F - dS = H curl F - dS
A 4

Because S is part of a horizontal plane, its upward normal is k. We calculate that
curl F = (x — y)i + (x — y)j, so

([ curl F-as = [ curl F - dS = ([ curl F - nds
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2. F(x,y,z) =x*sinzi+ y*j + xvk,
S is the part of the paraboloid z = 1 — x* — y* that lies
above the xy-plane, oriented upward
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3. F(x,y,z) = ze’i + xcosyj + xzsinyKk,
S is the hemisphere x> + y* + z> = 16, y = 0, oriented in
the direction of the positive y-axis
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4. F(x,y,z) = tan"'(x*yz?) i + x*yj + x°2° Kk,

S 1s the cone x = \/y2 + 22,0 < x < 2, oriented in the
direction of the positive x-axis
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20. Let C be a simple closed smooth curve that lies in the plane
x +y + z = 1. Show that the line integral

dex — 2xdy + 3yd:z

depends only on the area of the region enclosed by C and not
on the shape of C or its location in the plane.
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If C is given by the vector equation
r(t) =x(0)i+ y(0)j astsbh
then the unit tangent vector (see Section 13.2) is
x'(r) y'(1)
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You can verify that the outward unit normal vector to C is given by

5 . ety o B i
’ [r'(@)| [r@)]

FIGURE 4 (See Figure 4.) Then, from Equation 16.2.3, we have
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by Green’s Theorem. But the integrand in this double integral is just the divergence

of F. So we have a second vector form of Green’s Theorem.

(13] t F-nds = [ divF(xy) dA
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This version says that the line integral of the normal component of F along C is equal to

the double integral of the divergence of F over the region D enclosed by C.

that contains £. Then
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The Divergence Theorem Let E be a simple solid region and let S be the bound-
ary surface of E, given with positive (outward) orientation. Let F be a vector field
whose component functions have continuous partial derivatives on an open region




Proof of tha
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If n is the unit outward normal of S, then the surface integral on the left side of the Diver-
gence Theorem is

HF-dS=.""‘F-nd5=“‘f(Pi+ Qj+ RKk)-ndS
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= || Pi-nas+ [[Qj-nds+ [[Rk-nas
S

Therefore, to prove the Divergence Theorem, it suffices to prove the following three

equations:
[2] “Pl nds = m—dV
B jf03-nas = [[[ 5 v
@ HRk nds—mﬂdv
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To prove Equation 4 we use the fact that E is a type 1 region:
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where D is the projection of E onto the xy-plane. By Equation 15.6.6, we have
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and therefore, by the Fundamental Theorem of Calculus,
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The equation of S is z = us(x, y), (x, y) € D, and the outward normal n points
upward, so from Equation 16.7.10 (with F replaced by R k) we have

([ Rk - nds = ([ RCx.y. ua(x, y)) dA

e D
On S, we have z = u,(x, y), but here the outward normal n points downward, so we
multiply by —1:
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Therefore Equation 6 gives
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Comparison with Equation 5 shows that

([ Rk nds= JH I
)] )

0z

Equations 2 and 3 are proved in a similar manner using the expressions for £ as a
type 2 or type 3 region, respectively.
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EXAMPLE 1 Find the flux of the vector field F(x, y,z) = zi + y j + x Kk over the unit
sphere x* + y* + 2> = 1.

SOLUTION First we compute the divergence of F:
0 d 0
divF = — () + —(y) + — (1) = I
ox ady dz

The unit sphere S is the boundary of the unit ball B given by x* + y* + z* < 1. Thus
the Divergence Theorem gives the flux as

F-dS=([[divEav=([[ 1av =vB) =tm1) = == m
IJ 1l I

S B B

EXAMPLE 2 Evaluate ([, F - dS, where
F(x,y,2) = xyi+ (y> + ¢)j + sin(xy) k

and S is the surface of the region E bounded by the parabolic cylinder z = 1 — x? and
the planesz = 0,y = 0, and y + z = 2. (See Figure 2.)
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M e examt\m . 5. F(x,y,z) = xye’i + xy’z’j — ye’k,
S 1s the surface of the box bounded by the coordinate planes
and the planes x = 3,y = 2,and z =
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4. F(x,y,z) = (x* —y,z),
E is the solid cylinder y* + z*
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S is the surface of the solid bounded by the cylinder x = y*
and the planes x + z=1landz = 0
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Neview of Fvcvl'om sextians

Curves and their boundaries (endpoints)

Green’s Theorem

Stokes’ Theorem

” (ﬂ o £) dA = .’;de + Qdy
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”curlF dS = ] F - dr
‘S" JC

Fundamental Theorem of Calculus ’mb F'(x) dx = F(b) — F(a) a b
r(b)
Fundamental Theorem for Line Integrals L Vf-«dr = f(r(b) — f(r(a)) r(‘a)/—\gh-/
Surfaces and their boundaries
&

Solids and their boundaries

Divergence Theorem

([ divFav=({F-ds
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