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Abstract: Infinite hyperplane arrangements whose vertices form a lattice are studied

from the point of view of commutative algebra. The quotient of such an arrangement

modulo the lattice action represents the minimal free resolution of the associated

binomial ideal, which defines a toric subvariety in a product of projective lines. Con-

nections to graphic arrangements and to Beilinson’s spectral sequence are explored.

1 Introduction

We are interested in the defining ideals of toric subvarieties in a product of projective
lines P1 × P1 × · · · × P1. Writing (xi : yi) for the homogeneous coordinates of the
i-th factor P1, these are the binomial ideals in 2n variables of the following form:

JL = 〈 xayb − xbya | a− b ∈ L 〉 ⊂ S = k[x1, . . . , xn, y1, . . . , yn],

where L is a sublattice of Zn and k is a field. Here xa = xa1
1 xa2

2 · · ·xan
n for a =

(a1, . . . , an) ∈ Nn. Binomial ideals of the form JL are called Lawrence ideals. They
provide the algebraic analogue to the Lawrence construction for convex polytopes
[Zi, §6.6]. Lawrence polytopes enjoy remarkable rigidity properties, such as [Zi,
Theorem 6.27]. On the algebraic side, rigidity of Lawrence ideals manifests itself in
the following result, which appears in [Stu, Theorem 7.1]. Recall for part (d) that
the Graver basis consists of all binomials xayb − xbya in JL such that the only
vector a′ − b′ ∈ L\{0} with 0 ≤ a′ ≤ a and 0 ≤ b′ ≤ b is a− b itself.

Proposition 1.1 The following sets of binomials in a Lawrence ideal JL coincide:

(a) Any minimal set of binomial generators of JL.

(b) Any reduced Gröbner basis for JL.

(c) The universal Gröbner basis for JL (the union of all reduced Gröbner bases).

(d) The Graver basis for JL.

Cellular resolutions, as defined in [BS], provide a natural geometric framework
for studying homological, algorithmic and combinatorial properties of monomial and
binomial ideals. One instance is the Scarf complex, which gives the minimal reso-
lution for generic monomial ideals [BPS] and generic lattice ideals [PS]. The hull
resolution of [BS] generalizes the Scarf complex and provides a cellular resolution
for arbitrary co-Artinian monomial modules; however, it need not be minimal. For
lattice modules, the hull resolution is compatible with the lattice action and deter-
mines a cellular resolution of the corresponding lattice ideal [BS, Theorem 3.9].

In this paper we present a minimal cellular resolution, which happens to also
coincide with the hull resolution, for a remarkable class of nongeneric lattice ideals.
These are the unimodular Lawrence ideals JL, which are characterized as follows:
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Theorem 1.2 For a sublattice L of Zn the following conditions are equivalent:

(a) The Lawrence ideal JL possesses an initial monomial ideal which is radical.

(b) Every initial monomial ideal of the Lawrence ideal JL is a radical ideal.

(c) Every minimal generator of JL is a difference of two squarefree monomials.

(d) The lattice L is the image of an integer matrix B with linearly independent

columns, such that all maximal minors of B lie in the set {0, 1,−1}.
(e) The lattice L is the kernel of an integer matrix A with linearly independent

rows, such that all maximal minors of A lie in {0, m,−m} for some integer m.

(f) The quotient ring S/JL is a normal domain.

Theorem 1.2 is proved in Section 2. If any (and thus all) of these six equivalent
conditions for L holds, then we say that the Lawrence ideal JL is unimodular . A
first example is the ideal of 2× 2-minors of a 2× n-matrix of indeterminates:

JL = I2

(
x1 x2 x3 · · · xn

y1 y2 y3 · · · yn

)
(1.1)

Here L is the kernel of A = ( 1 1 1 · · · 1 ), or the image of the matrix B whose rows
are ei − ei+1, i ∈ {1, . . . , n− 1}, the differences of consecutive unit vectors in Rn.
The minimal resolution of (1.1) is an Eagon-Northcott complex, whose polyhedral
model is the hypersimplicial complex of Gel’fand and MacPherson [BS, Ex. 3.15].

In Section 2 we introduce an infinite periodic hyperplane arrangementHL whose
vertices are the elements of L. It is shown in Section 3 that this arrangement
supports the minimal free resolution of JL, and coincides with the hull complex of
JL. In Section 4 we prove that this resolution is universal in the sense that it is
stable under all Gröbner deformations. In particular, all initial ideals of JL have
the same Betti numbers as JL, and their minimal resolutions are also cellular. We
also construct cellular resolutions for the monomial ideals defined by the fibers of
L. In Section 5 we discuss Lawrence ideals associated with directed graphs and we
present open combinatorial problems. In Section 6 we reinterpret Lawrence ideals in
terms of the Audin-Cox homogeneous coordinate ring, and we generalize Beilinson’s
spectral sequence from projective space to unimodular toric varieties.

The authors would like to thank the Mathematical Sciences Research Institute
in Berkeley for its support while part of this paper was being written. All three
authors were partially supported by the NSF during the preparation of this work.

2 Unimodularity and an infinite hyperplane arrangement

In this section we establish some basic facts about unimodular lattices and their
Lawrence ideals. We start out by proving the equivalences stated in Section 1.

Proof of Theorem 1.2. A monomial ideal is radical if and only if it is generated
by squarefree monomials. Clearly, the first term of a binomial xayb − xbya is
squarefree if and only if the second term is squarefree. The equivalence of (a), (b)
and (c) follows directly from Proposition 1.1.
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In an exact sequence of free abelian groups,

0 −→ Zn−d B−→ Zn A−→ Zd, (2.1)

each (n−d)× (n−d)-minor of B is equal to the complementary d×d-minor of A, up
to a global constant m. Since the cokernel of B is torsion free, the maximal minors
of B are integers with no common factor. This implies m ∈ Z and the equivalence
of (d) and (e), for L = ker(A) = im(B).

The condition (e) is precisely the defining condition given in [Stu, §8, page
70] for a matrix A to be unimodular. A matrix A is unimodular if and only if its
Lawrence lifting Λ(A) is unimodular. Following [Stu, §7, page 55], the Lawrence
lifting of the d × n-matrix A is obtained by appending the zero d × n-matrix 0d,n

and two copies of the n× n-identity matrix In as follows:

Λ(A) =
(

A 0d,n

In In

)
.

Hence the equivalence of (b) and (e) is a reformulation of [Stu, Remark 8.10].
The conjunction of (b) and (e) implies property (f), namely, the lattice L is

the kernel of an integer matrix if and only if JL is a prime ideal, and (b) implies
normality by [Stu, Proposition 13.15]. To complete the proof, it suffices to show that
(f) implies (c). Suppose that (c) is false, i.e., the ideal JL has a minimal generator
xayb−xbya whose terms are not squarefree. We may assume that this generator is
a circuit, which means that it has minimal support. By setting all pairs of variables
not appearing in this circuit to zero, we reduce to the case where JL is a principal
ideal. But an affine binomial hypersurface is normal if and only if at least one of its
monomials is squarefree. This completes our proof of Theorem 1.2.

Here is another, more invariant, formulation of the unimodularity condition.

Proposition 2.1 A lattice L is unimodular if and only if, for every projection

π(L) of L to a coordinate sublattice Zr ⊂ Zn, the quotient Zr/π(L) is torsion free.

Proof. We will use the notation of the proof of Theorem 1.2. We first prove the
“if” direction. Set m = n− d and consider any nonsingular m×m-submatrix C of
B. The image of C in Zm equals π(L) for the corresponding coordinate projection
π : Zn → Zm. The finite abelian group Zm/π(L) is torsion free if and only if it
is zero. Hence π(L) = Zm and we conclude that the determinant of the m × m-
submatrix of B under consideration is either 1 or −1.

For the “only-if” direction, suppose that L is unimodular. Every coordinate
projection π(L) of L is unimodular as well. This can be seen by choosing A (resp. B)
to have appropriate unit vectors among its columns (resp. rows). Thus it suffices to
show that the group Zn/L is torsion free. But this follows from the exact sequence
(2.1), which identifies Zn/L with the image of the matrix A, showing Zn/L ' Zd.
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Let L be any m-dimensional sublattice of Zn, and write RL for the linear sub-
space of Rn spanned by L. We denote by HL the affine hyperplane arrangement in
RL obtained by intersecting RL with all lattice translates of the coordinate hyper-
planes in Rn. These are the hyperplanes {xi = j} for 1 ≤ i ≤ n and j ∈ Z. Thus
HL is an infinite m-dimensional hyperplane arrangement in the vector space RL.

It is convenient to embed HL as a hyperplane arrangement in the Euclidean
space Rm as follows. Let B be an integer n×m-matrix such that L = im(B) as in
part (d) of Theorem 1.2. Write bi ∈ Zm for the i-th row vector of B. Then HL is
isomorphic to the infinite arrangement in Rm consisting of the hyperplanes

Hij = { x ∈ Rm | bi · x = j } for all i ∈ {1, 2, . . . , n} and all j ∈ Z.

Proposition 2.2 Each lattice point in L is a vertex of the affine hyperplane ar-

rangementHL. There are no additional vertices inHL if and only if L is unimodular.

Proof. We identify L with Zm via the matrix B and thus consider HL as the
hyperplane arrangement HL = {Hij} in Rm. The intersection point of m linearly
independent such hyperplanes,

Hi1j1 ∩ Hi2j2 ∩ · · · ∩Himjm = {x},

is defined by the linear equations biν · x = jν for ν = 1, . . . , m. The point x ∈ Rm

has integer coordinates for all j1, . . . , jm ∈ Z if and only if det(bi1 , . . . ,bim
) = ±1.

By part (d) in Theorem 1.2, this means that the lattice L is unimodular. The first
assertion holds because each x ∈ Zm can be expressed as such an intersection.

From now on we assume that L is a unimodular sublattice of Zn. Recall from
[Stu, Proposition 8.11] that the Graver basis of the Lawrence ideal JL is given
precisely by the circuits of the lattice L. (The circuits of L are the primitive vectors
in L whose supports are minimal with respect to inclusion.) We view HL as an
infinite regular cell complex, equipped with an action by the abelian group L.

Lemma 2.3 Two vertices a and b of the arrangement HL are connected by an

edge if and only if their difference a− b is a circuit of the unimodular lattice L.

Proof. Since L acts transitively on the vertices of HL we may assume that b = 0.
Our assertion states that a is a circuit if and only if {0,a} forms an edge in HL.
This holds because the circuits in the subspace RL of Rn are computed by the rule

Hi10 ∩ Hi20 ∩ · · · ∩Him−10 = Ra

for all possible increasing sequences of indices 1 ≤ i1 < i2 < · · · < im−1 ≤ n.

In this section we have introduced a family of hyperplane arrangements HL

whose vertices form a lattice L. Such arrangements appear in many parts of the
mathematical literature; for example, see [BLSWZ]. The group L acts on the faces
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of the arrangement HL with finitely many orbits, and we shall be interested in the
quotient complex HL/L. Nontrivial examples will be presented in Section 5. First
we reinterpretHL andHL/L as minimal free resolutions in the sense of commutative
algebra. This will be done in the next two sections by labeling the faces of HL with
Laurent monomials, following the general recipes in [BS].

Our warmup example (1.1) is the case where L is spanned by the vectors ei −
ei+1, i ∈ {1, . . . , n− 1}, the differences of the consecutive unit vectors in Rn. Thus
JL is here the ideal of 2×2-minors, and HL is the hypersimplicial arrangement . The
quotient complex HL/L has n−1 distinct maximal faces, called hypersimplices. The
hypersimplicial arrangement for n = 3 is depicted in the following figure:

y2
1y2x3

3
x2
1x2y3

3

y1y2x2
3

x1x2y2
3

y2x3
x2y3

x1y2
y1x2

x2
1y2y3

y2
1x2x3

y2
1x2
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1y2
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x1y3 1
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3
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x2
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y1x2
x1y2

x2y3
y2x3

x1x2y2
3

y1y2x2
3

Figure 1: The hypersimplicial arrangement for n = 3.

Its hypersimplices are up-triangles and down-triangles. Each vertex is labeled
by a Laurent monomial. The finite quotient complex HL/L is a torus, subdivided
by one vertex, three edges and two 2-cells, one up-triangle and one down-triangle.

3 From hyperplane arrangements to minimal free resolutions

We fix a unimodular sublattice L of dimension m in Zn. The Laurent polynomial
ring T = k[x±1

1 , . . . , x±1
n , y±1

1 , . . . , y±1
n ] is a module over the polynomial ring S =

k[x1, . . . , xn, y1, . . . , yn]. We consider the following monomial S-submodule of T :

ML := S · { xay−a | a ∈ L } ⊂ T.

Each lattice point a = (a1, . . . , an) in L is a vertex of the arrangement HL, and we
label that vertex of HL with the corresponding generator of ML, namely,

xay−a := xa1
1 xa2

2 · · ·xan
n y−a1

1 y−a2
2 · · · y−an

n .

Each face F of HL is then labeled by the least common multiple mF of the labels of
its vertices. (The least common multiple of a set of Laurent monomials is the Laurent
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monomial whose exponents are the coordinatewise maxima of the given exponents.)
The labeled cell complex HL defines a complex of free Z2n-graded S-modules

FHL =
⊕

F∈HL
F 6=∅

S(−mF ),

where the summand S(−mF ) has homological degree dim(F ). The differential of
the complex FHL

is the homogenized differential of the cell complex HL, defined by

∂(F ) =
∑

F ′⊂F
cod(F ′,F )=1

ε(F, F ′) · mF

mF ′
· F ′, for faces F of HL.

Here ε(F, F ′) is either +1 or −1, indicating the orientation of F ′ in the boundary
of F . See [BS, §1] for details on this construction. The complex (FHL

, ∂) is not
S-finite, but has finite length m = rank(L).

As an example consider the complex of free k[x1, x2, x3, y1, y2, y3]-modules de-
fined by the hypersimplicial arrangement in Figure 1. The edge E connecting the
module generators m1 = x2y3

y2x3
and m2 = x1y3

y1x3
is labeled by their least common

multiple, which is the Laurent monomial mE = x1x2y3
x3

. This edge E represents the
first syzygy (x1y2) ·m1 − (y1x2) ·m2 of the monomial submodule ML.

Theorem 3.1 The complex (FHL , ∂) is a minimal Z2n-graded free S-resolution of

the lattice module ML.

Proof. The complex (FHL , ∂) consists of free S-modules and is clearly Z2n-graded.
To show that it is a resolution, we apply the exactness criterion in [BS, Proposition
1.2] to the labeled cell complex X = HL. For any (a,b) ∈ Z2n we consider the
subcomplex X≤(a,b) consisting of all faces F of the arrangement X whose label
mF = xcyd satisfies the coordinatewise inequalities c ≤ a and d ≤ b. We shall
prove that X≤(a,b) is contractible, by identifying this subcomplex with a convex
polytope in RL. For instance, the marked pentagon in Figure 1 is X≤(2,1,1, 1,1,1).

Our labeled hyperplane arrangement can be described as follows. For u ∈ Rn

we write (due, buc) for the vector in Z2n obtained by rounding up and down
each coordinate of u. For instance, if u = (−2/5,−1, 7/5) then (due, buc) =
(0,−1, 2,−1,−1, 1). Two vectors u and v in the subspace RL of Rn are called
equivalent if (due, buc) = (dve, bvc). The resulting equivalence classes on RL

are the (relatively open) faces of X = HL. The face F containing u ∈ RL

is labeled by the vector (due,−buc), or by the corresponding Laurent monomial
mF = xduey−buc.

For a,b ∈ Zn we consider the following subset of the subspace RL in Rn:

{ u ∈ RL | due ≤ a and − buc ≤ b } = { u ∈ RL | − b ≤ u ≤ a }. (3.1a)

This is a convex polytope with facet hyperplanes taken from HL. By the construc-
tion in the previous paragraph, the complex X≤(a,b) is a polyhedral subdivision of
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the convex polytope identified in (3.1a). Therefore X≤(a,b) is contractible, and, by
[BS, Proposition 1.2], the complex (FHL

, ∂) is exact over S.
It follows from the description of the labeled complex X = HL in the second-

to-last paragraph that distinct faces F and F ′ of X have distinct labels mF 6= mF ′ .
This shows that the resolution (FHL

, ∂) is minimal (compare [BS, Remark 1.4]).

Corollary 3.2 The Z2n-graded Betti numbers of ML are 0 or 1.

We retain the following identification for the rest of the paper:

X≤(a,b) = { u ∈ RL | − b ≤ u ≤ a } for a,b ∈ Zn. (3.1b)

In the next section we shall further identify these polytopes with the fibers of the
Lawrence ideal JL, i.e., with the congruence classes modulo JL of monomials in S.

Note that the polytope X≤(a,b) is itself a (closed) face of the arrangement
X = HL if and only if there exists a vector u ∈ RL such that (a,b) = (due,−buc).
Suppose that this holds. Then each coordinate of a+b is either 0 or 1, and, taking
any vertex of X≤(a,b), we get a lattice point v ∈ L with −b ≤ v ≤ a. By translating
our face with the lattice vector v, we obtain now the following conclusion:

Proposition 3.3 Modulo the action by the unimodular lattice L, each face of HL

has the form X≤(a,b), where a ∈ {0, 1}n
and b ∈ {0, 1}n

have disjoint support.

We next consider the quotient complex HL/L, which is formally defined as the
face poset of HL modulo the action by the lattice L. Proposition 3.3 implies:

Corollary 3.4 The number of faces of the quotient complex HL/L is finite.

We apply the algebraic quotient construction in [BS, Section 3] to this quotient
complex. The labeling of the Z2n-graded cell complex X = HL is consistent with
the action by the following lattice which is canonically isomorphic to L,

Λ(L) := { (u,−u) ∈ Z2n | u ∈ L }. (3.2)

Following [BS, Lemma 3.5], the complex (FHL , ∂) has the structure of a complex
of Z2n-graded free modules over the group algebra S[L]. The rank of FHL

over
S[L] equals the number of faces of H/L, which is finite by Corollary 3.4. Now the
functor in [BS, Theorem 3.2] defines an equivalence of categories between the cate-
gory of Z2n-graded S[L]-modules and the category of Z2n/Λ(L)-graded S-modules.
Applying this functor to the S[L]-complex (FHL

, ∂) we obtain the cellular quotient
complex (FHL/L, ∂) which is a complex of Z2n/Λ(L)-graded free S-modules. From
Theorem 3.1 and [BS, Corollary 3.7] we conclude that (FHL/L, ∂) is the minimal
free resolution of S/JL over S. This concludes the proof of the following theorem.

Theorem 3.5 The quotient complexHL/L of the hyperplane arrangement modulo

L supports the minimal S-free resolution of the unimodular Lawrence ideal JL.
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Corollary 3.6 The minimal free resolution of the unimodular Lawrence ideal JL

is independent of the characteristic of the base field k. The number of minimal i-th

syzygies of S/JL equals the number of i-dimensional faces of the quotient complex

HL/L, and the Betti numbers of S/JL in the Z2n/Λ(L)-grading are all 0 or 1.

To write down the matrices in the minimal cellular resolution (FHL/L, ∂) of
a unimodular Lawrence ideal JL, one must select a fundamental domain of HL

modulo L and identify the cover relation in the poset of faces of HL/L. In higher
dimensions it is convenient to use the monomial ideals in Section 4 for that purpose,
but in dimensions 2 and 3 we can do the identifications directly on the picture. For
instance, if L = ker(1 1 1) and thus JL is the ideal of 2 × 2-minors of a generic
2 × 3-matrix, then the resolution (FHL/L, ∂) is supported by the hypersimplicial
arrangement in R2 from Figure 1. Here the quotient complex HL/L consists of one
vertex, three edges and two triangles, which are glued to form a torus. Hence S/JL

has one generator, three first syzygies and two second syzygies:

0 −→ S2

 x1 y1

x2 y2

x3 y3


−−−−−−−−→S3

( x2y3−x3y2 x3y1−x1y3 x1y2−x2y1 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→S −→ S/JL −→ 0

We now show that the minimal cellular resolution of S/JL equals the hull
resolution introduced in [BS, Section 3]. For a, b ∈ Zn and t > 0, we write

(ta, tb) = (ta1 , . . . , tan , tb1 , . . . , tbn) ∈ R2n

Recall that hull(ML) is the complex of bounded faces of the polyhedron Pt for large
t, where Pt is the convex hull of { (ta, tb) | xayb ∈ ML } ⊂ R2n. The vertices of Pt

correspond to the minimal generators of ML, and the hull resolution of S/JL is the
cellular resolution supported on hull(ML)/L. We shall use the following lemma.

Lemma 3.7 Let {a, b} and {c, d} be pairs of integers so a + b = c + d, and let

t > 0, t 6= 1. If |a− b| = |c− d|, then ta + tb = tc + td. If |a− b| > |c− d|, then

ta + tb > tc + td.

Proof. If |a− b| = |c− d|, then {a, b} = {c, d} as multisets. If |a− b| > |c− d|,
suppose to be definite that a > c ≥ d > b. In view of a − c = d − b, we have
ta − tc − td + tb = tc(ta−c − 1)− tb(td−b − 1) = tb(tc−b − 1)(ta−c − 1) > 0.

Theorem 3.8 The hull resolution of S/JL agrees with the minimal free resolution.

Proof. We show that hull(ML) and HL agree as cell complexes, using the fact that
hull(ML) consists of those faces of Pt supported by strictly positive inner normals.

Let F be a face ofHL. Then F = X≤(due,−buc) for some u ∈ RL. In other words,
the vertices of F are precisely those elements a ∈ L so buic ≤ ai ≤ duie for each i.
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Let v = (t−due, tbuc). If a is a vertex of F , then v · (ta, t−a) = n + m + (n−m)t−1,
where m is the number of coordinates in which u is an integer. Suppose that b ∈ L

is not a vertex of F , and let t > 1. Write vi = (t−duie, tbuic), so v · (ta, t−a) =∑n
i=1 vi · (tai , t−ai). For each i we have vi · (tbi , t−bi) ≥ vi · (tai , t−ai), with equality

if and only if buic ≤ bi ≤ duie. This follows by applying Lemma 3.7 to the pairs
{bi − duie, buic − bi} and {ai − duie, buic − ai}. Thus v · (tb, t−b) > v · (ta, t−a), so
v supports F as a face of hull(ML).

Let a and b be two vertices of HL which do not belong to a common face of
HL, and let F = X≤(due,−buc) be the face of HL determined by u = (a + b)/2.
Then |ai − bi| ≥ 2 for some i, for otherwise a and b would both belong to F by
Proposition 3.3. Let c be any vertex of F , and let d = a+b−c. Note that for each
j, {cj , dj} = {bujc, duje} as multisets, so |cj − dj | ≤ 1. Then a + b = c + d, and
|aj − bj | ≥ |cj − dj | for each j, with strict inequality for j = i. Let t > 1. Applying
Lemma 3.7 to the pairs {aj , bj} and {cj , dj},

taj + tbj ≥ tcj + tdj and t−aj + t−bj ≥ t−cj + t−dj

for each j, with strict inequalities for j = i. Let p be the midpoint of the line
segment from (ta, t−a) to (tb, t−b), and let q be the midpoint of the line segment
from (tc, t−c) to (td, t−d). We have shown that p − q is a nonzero, nonnegative
vector. Therefore, the point p cannot lie on any face of hull(ML), because v·p > v·q
for any strictly positive vector v. Thus a and b cannot belong to a common face of
hull(ML). We conclude that the cell complexes hull(ML) and HL are equal.

4 Fiber monomial ideals and initial monomial ideals

With any lattice ideal in a polynomial ring one can associate two families of mono-
mial ideals. First, there are the initial monomial ideals , with respect to various term
orders. Their minimal free resolutions can always be lifted, by Schreyer’s construc-
tion in Gröbner basis theory, to a (possibly nonminimal) resolution of the lattice
ideal. Second, we have the fiber monomial ideals, which are generated by the fibers,
that is, the equivalence classes of monomials modulo the lattice ideal [PS, Section
2]. It follows from the results in [BS, Section 3] that the resolution of the lattice
ideal is always determined by the resolution of a large enough fiber ideal.

In this section we make these results precise for the unimodular Lawrence
case. Fix a unimodular sublattice L ⊂ Zn. Two monomials m and m′ in S =
k[x1, . . . , xn, y1, . . . , yn] are considered equivalent if m − m′ lies in the unimodular
Lawrence ideal JL. The equivalence classes are finite and called the fibers of JL.
For given a,b ∈ Nn, let fib(a,b) denote the fiber of the monomial xayb. We shall
identify the fibers with the lattice points in the polytopes of the form (3.1b):

Lemma 4.1 Let X = HL be the labeled cell complex introduced in Section 3.

Then the map φ : fib(a,b) → X≤(a,b) ∩ L , xcyd 7→ a− c is a bijection.
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Proof. A monomial xcyd in S lies in fib(a,b) if and only if the vector (a− c,b−
d) ∈ Z2n lies in the lattice Λ(L) defined in (3.2). The latter condition means that
u = a− c lies in L and b + u = d. Thus u is a vertex of X = HL and its label

xuy−u = xa−cyb−d divides xayb,

which shows that u is actually a vertex of X≤(a,b). Hence the map φ is well-
defined. To see that it is a bijection we note that the inverse map is given by
φ−1(u) = xa−uyb+u. This map is an analogue of the bijection in [PS, (2.1)].

Let 〈fib(a,b)〉 denote the ideal in S generated by all monomials in the fiber of
xayb. The vertices of the cell complex X≤(a,b) (considered as a subcomplex of HL)
are labeled with certain Laurent monomials of the form xuy−u, with u ∈ L. Con-
sider their preimages under the bijection φ, and let Y(a,b) denote the same cell com-
plex as X≤(a,b) but with the vertices labeled by the monomials in fib(a,b). Thus
the vertex with label xuy−u in X≤(a,b) becomes the vertex with label xa−uyb+u

in Y(a,b). The labeled cell complex Y(a,b) gives rise to a Z2n-graded complex of free
S-modules as in [BS, Section 1]. This complex is always exact and minimal:

Theorem 4.2 Let L be a unimodular sublattice of Zn and a,b ∈ Nn. The labeled

cell complex Y(a,b) defines a minimal free resolution of the monomial ideal 〈fib(a,b)〉.

Proof. For any c,d ∈ Nn we can make the following identification of cell complexes

(Y(a,b))≤(c,d) = X≤(min{b,c−a}, min{a,d−b}), (4.1)

where “min” refers to the coordinatewise minimum, and the labels are shifted appro-
priately. To see that (4.1) holds, one identifies both sides with the convex polytope

{ u ∈ RL | (0,0) ≤ (a + u,b− u) ≤ (c,d) },

together with its natural subdivision. We conclude that the relevant subcomplexes
for the exactness criterion in [BS, Proposition 1.2] are all contractible. As above,
in the proof of Theorem 3.1, distinct faces of Y(a,b) have distinct labels. Therefore
Y(a,b) supports a minimal cellular resolution of the fiber ideal 〈fib(a,b)〉.

Example 4.3 Let L be the corank 1 lattice of all vectors in Zn with coordinate
sum zero. As discussed at the end of Section 2, X = HL is the hypersimplicial
arrangement in Rn−1, while JL is the ideal of 2× 2-minors of the matrix (1.1). Let
M be the ideal generated by the monomials xu1

1 xu2
2 · · ·xun

n yv1
1 yv2

2 · · · yvn
n where(

u1 u2 · · · un

v1 v2 · · · vn

)
(4.2)

runs over all nonnegative integer matrices having the same row sums and the same
column sums. Then the minimal free resolution of M is cellular and supported by a
suitably relabeled subcomplex Y(a,b) of the hypersimplicial arrangement X = HL.

10



For instance, let n = 3 and consider the following monomial ideal

M = 〈 x2
2x

2
3y

3
1 , x1x2x

2
3y

2
1y2, x2

1x
2
3y1y

2
2 , x1x

2
2x3y

2
1y3,

x2
1x2x3y1y2y3, x3

1x3y
2
2y3, x2

1x
2
2y1y

2
3 , x3

1x2y2y
2
3 〉

Here the matrices (4.2) have row sums 4, 3 and column sums 3, 2, 2. The minimal
free resolution of M is supported on the complex Y(2,1,1, 1,1,1) which is a pentagon:

x2
1x2

2y1y2
3 x1x2

2x3y2
1y3 x2

2x2
3y3

1

x3
1x2y2y2

3

x2
1x2x3y1y2y3

x1x2x2
3y2

1y2

x3
1x3y2

2y3 x2
1x2

3y1y2
2

Figure 2: Minimal free resolution of a fiber in the hypersimplicial arrangement.

Let ≺ be any term order on the polynomial ring S = k[x1, . . . , xn, y1, . . . , yn].
Consider the initial monomial ideal in≺(JL) of the unimodular Lawrence ideal JL.
We know from Theorem 1.2 that in≺(JL) is a squarefree monomial ideal. We shall
describe a minimal cellular free resolution of in≺(JL) and show that it has the same
Betti numbers as the resolution (FHL/L, ∂) of the Lawrence ideal JL.

Let H0
L be the set of all faces of the infinite hyperplane arrangement HL which

contain the origin 0 ∈ L. This is a finite cell complex which we identify with the
central hyperplane arrangement in RL given by the n coordinate hyperplanes xi = 0.
The faces of H0

L are cones in RL with their apex at the origin. Under the embedding
of HL in Rm given prior to Proposition 2.2, the complex H0

L becomes the central
arrangement defined by the hyperplanes H10, H20, . . . , Hn0 in Rm. For instance, in
the example of Figure 1, H0

L consists of one 0-face, six 1-faces and six 2-faces.
The term order ≺ extends uniquely to a total order on all Laurent monomials

xuy−u and hence on all vertices u of HL. A positive-dimensional cone F in the
central arrangement H0

L is called ≺-positive if all nonzero vertices u ∈ L of the face
F satisfy the inequality 1 ≺ xuy−u. We can represent the term order ≺ by a generic
hyperplane H≺ not containing the origin in RL, such that the ≺-positive cones of
H0

L are precisely those cones which have bounded, nonempty intersection with H≺.
If F is an i-dimensional ≺-positive cone in H0

L then F ∩H≺ is an (i−1)-dimensional
convex polytope. We write in≺(HL) for the (m−1)-dimensional labeled cell complex
consisting of those (bounded) polytopes F ∩ H≺. Here F ∩ H≺ inherits the label
mF from the face F of HL. Note that mF is a monomial in S since 0 ∈ F .

11



H≺
y2x3
x2y3

x1y2
y1x2

y1x3
x1y3

1 x1y3
y1x3

y1x2
x1y2

x2y3
y2x3

x1y2

x1y3

x2y3

in≺(HL)

Figure 3: Initial monomial ideal of a unimodular Lawrence ideal.

Figure 3 shows such a hyperplane H≺ and the resulting complex in≺(HL) arising
from the hypersimplicial complex in Figure 1. The 1-dimensional complex in≺(HL)
represents the minimal S-free resolution of the monomial ideal in≺(JL):

0 −→ S2

 x1 0

−x2 −y2

0 y3


−−−−−−−−−−−→S3

( x2y3 x1y3 x1y2 )
−−−−−−−−−−−−−−→S −→ S/in≺(JL) −→ 0

Theorem 4.4 The minimal free resolution of the initial monomial ideal in≺(JL)
of the unimodular Lawrence ideal JL is given by the labeled cell complex in≺(HL).

Proof. The ≺-positive 1-dimensional faces C of H0
L are the circuits of L, and their

labels mC are the minimal generators in≺(JL). Any higher-dimensional ≺-positive
face F of H0

L corresponds to a region in the central hyperplane arrangement in RL

given by the coordinates. Its label mF is a squarefree monomial by Proposition 3.3.
We can identify mF with the signed vector in the oriented matroid which represents
the region F . Now, every vector in an oriented matroid is a conformal union of
the circuits [BLSWZ, Proposition 3.7.2]. This implies that mF is the least common
multiple of the labels mC of all circuits C with C ⊆ F . In other words, mF is the
least common multiple of those vertices of in≺(JL) which lie on F ∩H≺.

The labeled cell complex in≺(HL) satisfies the exactness criterion in [BS, Propo-
sition 1.2] because the subcomplex of faces whose label divides xayb is contractible.
This follows from a result of Björner and Ziegler [BLSWZ, Theorem 4.5.7]. Mini-
mality is inherited from HL since different faces in HL have different labels.

Theorem 4.4 tells us that the minimal cellular resolution (FHL/L, ∂) of a uni-
modular Lawrence ideal JL is a universal resolution in the sense that it is stable with
respect to any term order ≺. This generalizes the fact that the minimal generators

12



of JL are a universal Gröbner basis (Proposition 1.1). In other words, the universal
Gröbner basis property extends from the generators of JL to all the higher syzygies.

5 Lawrence ideals arising from graphs

Unimodular lattices arise naturally in the study of directed graphs and matroids.
See Chapters 1 and 6 in [Whi1] for a first introduction. Detailed information on
unimodularity appears in [Whi2, Chapter 3]. For instance, a famous theorem of
Seymour [Whi2, Theorem 3.1.1(9)] states that every unimodular lattice can be built
up in a simple way (by duality, 1-sums, 2-sums and 3-sums) from graphic lattices
and a certain five-dimensional lattice in Z10. In this section we discuss the minimal
free resolutions of cographic and graphic lattice ideals in combinatorial terms.

Let G = (V, E) be a finite directed graph on d vertices, which we assume
are labeled with numbers 1, 2, . . . , d. Suppose that E has n edges. The edge-node
incidence matrix of G is the n×d-matrix whose rows are ei−ej ∈ Zd for (i, j) ∈ E.
The image of this matrix in Zn is denoted by LG, and is called the graphic lattice
of G. The orthogonal complement of LG in Zn is denoted by L∗G, and is called the
cographic lattice of G. In the language of matroid theory, the graphic lattice LG

is spanned by the cocircuits of G, and the cographic lattice L∗G is spanned by the
circuits of G. The following classical result appears in [Whi2, Theorem 1.5.3].

Proposition 5.1 The graphic and cographic lattices LG and L∗G are unimodular.

We write JG = JLG
and J∗G = JL∗

G
for the two unimodular Lawrence ideals

associated with a directed graph G. We call JG the graphic ideal and J∗G the
cographic ideal . In fact, these ideals depend only on the undirected graph underlying
G, and they can be described as follows. Replace each edge (i, j) of the directed
graph G = (V, E) by two directed edges, one from vertex i to vertex j and the
other one from vertex j to vertex i. We associate the variables xij and xji with
these directed edges. This gives a polynomial ring S with 2n variables over k. We
interpret the variable xji as the homogenizing variable for xij . The pair of variables
{xij , xji} will play the same role as the pair {xi, yi} in the previous sections.

We first discuss the graphic ideal of G. It can be computed as an ideal quotient:

JG =
〈 ∏

j:(i,j)∈E

xij −
∏

j:(i,j)∈E

xji

∣∣ i = 1, 2, . . . , d

〉
: 〈

∏
(r,s)∈E

xrsxsr 〉∞.

The d binomials listed above correspond to a lattice basis of LG. Hence JG has
codimension d. The minimal generators of JG are the cocircuits of the graph G.

Example 5.2 Consider the complete graph on five nodes, G = K5. The graphic
ideal JK5 is generated by five quartics such as x12x13x14x15−x21x31x41x51 and ten
sextics such as x13x14x15x23x24x25 − x31x32x41x42x51x52. They correspond to the
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15 cocircuits of K5. The minimal free resolution of JK5 is given by a 4-dimensional
simplicial complex with 24 facets, 60 tetrahedra, 50 triangles and 15 edges.

We generalize this example by describing the minimal free resolution of JKd
, the

graphic ideal of the complete graph on d nodes. Our construction is related to Lie
algebra cohomology; a geometric version was found independently by Björner and
Wachs [BW]. Let S be the polynomial ring over k in the d(d− 1) variables xij . Let
Fr−1 denote the free S-module whose basis elements correspond to ordered partitions
(A1 |A2 | . . . |Ar) of the set {1, . . . , d}, such that 1 ∈ A1, for all 1 ≤ r ≤ d− 1.

Theorem 5.3 The minimal resolution of the graphic ideal JKd
is the exact complex

F• : 0 → Fd−2
∂d−2−→ Fd−3

∂d−3−→ Fd−4 −→ . . . −→ F2
∂2−→ F1

∂1−→ F0 → 0, (5.1)

where the differential ∂r−1 acts on the basis elements of Fr−1 by the “cyclic rule”

∂r−1(A1 | A2 | · · · | Ar) = (−1)r+1
∏

i∈Ar

∏
j∈A1

xij · (Ar ∪A1 | A2 | · · · | Ar−1)

+
r∑

s=2

(−1)s
∏

i∈As−1

∏
j∈As

xij · (A1 | A2 | · · · | As−2 | As−1 ∪As | As+1 | · · · | Ar).

Proof. The central hyperplane arrangement H0
LKd

can be identified with the fa-
miliar braid arrangement which consists of the hyperplanes zi = zj in the (d − 1)-
dimensional vector space { (z1, z2 . . . , zd) ∈ Rd | z1 + · · ·+ zd = 0 }. The (r − 2)-
faces of H0

LKd
are naturally labeled by the ordered partition (A1 | A2 | . . . | Ar)

of {1, 2, . . . , d}. More precisely, the unique face having a given point in its relative
interior is determined by sorting the coordinates of that point.

We shall apply the initial ideal construction of Theorem 4.4. Let H≺ denote
the hyperplane {z1 = 1} which represents a lexicographic order with the variables
x12, . . . , x1d being highest. The faces of H0

LKd
which have bounded intersection with

H≺ are indexed by those ordered partitions (A1 | A2 | . . . | Ar) which satisfy 1 ∈ A1.
The simplicial complex in≺(HLKd

) is the first barycentric subdivision of the (d−2)-
simplex, as shown for d = 4 in Figure 4. The vertices of in≺(HLKd

) are indexed by
the monomials

∏
i∈A1

∏
j∈A2

xij which represent partitions (A1, A2) with 1 ∈ A1.
Higher dimensional faces are labeled by ordered partitions with three or more parts.
The cellular resolution given by the labeled simplicial complex in≺(HLKd

) has the
format (5.1) with the differential mapping (A1 | A2 | · · · | Ar) to

r∑
s=2

(−1)s
∏

i∈As−1

∏
j∈As

xij · (A1 | A2 | · · · | As−2 | As−1 ∪As | As+1 | · · · | Ar).

This complex is the minimal free resolution of the monomial ideal in≺(JKd
) as in

Theorem 4.4. We lift this complex to the minimal free resolution of JKd
by a

construction as in [PS, Theorem 5.4]. Because HLKd
is simplicial, lifting amounts

to adding one more term to each differential, and that term is exactly the remaining
cyclic term, which is the first one listed in the statement of Theorem 5.3.
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x13x23x43

x12x13x42x43 x13x14x23x24

x12x13x14

x12x32x42 x12x14x32x34 x14x24x34

Figure 4: An initial ideal of the complete graphic Lawrence ideal.

We leave it to a future project to compute the Betti numbers of the graphic
ideal JG for arbitrary directed graphs G. We expect that there exist nice formulas
in terms of the characteristic polynomials of graphic arrangements following [Za].

Another open combinatorial problem is to find a formula for the Betti numbers
of the cographic ideals J∗G which can be described as follows. Let C = (C+, C−) be
a signed circuit of the directed graph G; see [BLSWZ, §1.1]. This means that C+

and C− are disjoint subsets of the set of edges such that the edges in C+ together
with the reversals of the edges in C− form a directed cycle which meets each vertex
of G at most once. Every signed circuit C = (C+, C−) is coded into a binomial:∏

(i,j)∈C+

∏
(k,l)∈C−

xijxlk −
∏

(i,j)∈C+

∏
(k,l)∈C−

xjixkl.

The cographic ideal J∗G is minimally generated by these binomials where C =
(C+, C−) runs over all signed circuits of the directed graph G. For instance, if
G = K4 is the complete graph on {1, 2, 3, 4} with edges (i, j) for i < j, then there
are seven circuits [BLSWZ, bottom of page 3] and our cographic ideal equals

J∗K4
=

〈
x12x23x31 − x21x32x13 , x12x24x41 − x21x42x14 , x13x34x41 − x31x43x14,

x23x34x42 − x32x43x24 , x12x23x34x41 − x21x32x43x14 ,

x13x32x24x41 − x31x23x42x14 , x12x24x43x31 − x21x42x34x13

〉
Since the matroid of K4 is self-dual, that is, K4 is self-dual under planar duality of
graphs, it follows that the cographic ideal J∗K4

is isomorphic to the graphic ideal JK4

whose minimal resolution is depicted in Figure 4. For d ≥ 5, however, the cographic
ideal J∗Kd

is different from and more complicated than the graphic ideal JKd
.
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A special case of interest is the complete bipartite graph Kd,e. Its cographic
ideal J∗Kd,e

is the Lawrence liftings of the ideal of 2× 2-minors of a generic matrix.
While the minimal free resolution of the ideals of 2× 2-minors depends on the char-
acteristic of the base field, a result of Hashimoto [RW], their Lawrence liftings have
minimal free resolutions which are cellular and characteristic free, by Corollary 3.6.

6 The diagonal embedding of a unimodular toric variety

We next present a different geometric interpretation of the Lawrence ideal JL. It
concerns the diagonal embeddings of a toric variety, written in the homogeneous
coordinates of Audin-Cox [Au],[Cox]. This connection first appeared in [Oda]. As an
application, Beilinson’s spectral sequence is presented for unimodular toric varieties.

Let Σ be a complete fan in the lattice Zm and X the associated complete normal
toric variety; see e.g. [Fu]. Let b1, . . . ,bn ∈ Zm be the primitive generators of the
one-dimensional cones of Σ, and let B be the n × m-matrix with row vectors bi.
Each bi determines a torus-invariant Weil divisor Di on X, and the group Cl(X) of
torus-invariant Weil divisors modulo linear equivalence has the presentation

0 −→ Zm B−→ Zn π−→ Cl(X) −→ 0,

where π takes the i-th standard basis vector of Zn to the linear equivalence class
[Di] of the corresponding divisor Di. If the divisor class group is torsion free, so
that Cl(X) = Zn−m, then we express π by a matrix A, and we are back in (2.1).

Audin [Au] and Cox [Cox] define the homogeneous coordinate ring of X to
be the polynomial ring R = k[x1, . . . , xn], equipped with a grading by the abelian
group Cl(X) via the morphism π above. Hence a monomial xa ∈ R has degree
[
∑n

i=1 aiDi] ∈ Cl(X). The fan Σ is encoded in the irrelevant ideal BΣ ⊂ R whose
monomial generators correspond to complements of facets of Σ. Coherent sheaves
on the toric variety X are represented by BΣ-torsion-free Cl(X)-graded modules
over R; see [Cox] for the case where Σ is simplicial, and [Mu] for the general case.
Closed subschemes of X are defined by BΣ-saturated Cl(X)-graded ideals of R.
Furthermore, for any Cl(X)-graded R-module T , and any a ∈ Cl(X), we define its
twist T (a) to be the graded R-module with components T (a)b := Ta+b. Let OX(a)
denote the coherent sheaf on X corresponding to the twisted R-module R(a).

The toric variety X ×X has the homogeneous coordinate ring

S = R ⊗k R = k[x1, . . . , xn, y1, . . . , yn]

The diagonal embedding X ⊂ X×X defines a closed subscheme, and is represented
by a Cl(X)×Cl(X)-graded ideal IX in S. That ideal IX is the kernel of the natural
map S = R⊗R → k[Cl(X)]⊗R , xuyv = xu ⊗ xv 7→ [u]⊗ xu+v. Explicitly,

IX = 〈 xuyv − xvyu | π(u) = π(v) in Cl(X) 〉 ⊂ S.

This formula proves the following observation.
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Proposition 6.1 The ideal IX ⊂ S defining the diagonal embedding X ⊂ X ×X

equals the Lawrence ideal JL for the lattice L = im(B) = ker(π) of principal divisors.

The basic example is projective space X = Pm. Here n = m + 1, L =
ker( 1 1 1 · · · 1 ), Cl(X) = Z1, and IX = JL is the ideal (1.1) of 2 × 2-minors
of a 2 × n-matrix of indeterminates. The minimal free resolution of IX = JL is
an Eagon-Northcott complex. Example 10 in [Oda] demonstrates how Beilinson’s
spectral sequence for Pm can be derived from this observation.

The results in this paper provide a cellular model for this Eagon-Northcott
complex as a hypersimplicial complex (Figure 1). We will show that this derivation
of Beilinson’s spectral sequence extends to the general setting of Theorem 3.5. Thus
our cellular resolutions provide a partial solution to [Oda, Problem 6].

We say that a toric variety X is unimodular if its lattice L of principal divisors
is a unimodular sublattice of Zn. This condition is equivalent, by [Stu, Remark
8.10], to saying that the toric variety X is smooth and any other variety obtained
by toric flips and flops is smooth as well. Toric varieties with this property appear
frequently in representation theory and in integer programming. For example, the
toric varieties associated with transportation polytopes and products of minors are
unimodular. These toric varieties were studied recently by Babson and Billera [BB].

Suppose now that X is a unimodular toric variety. Then Theorem 3.5 constructs
an m-dimensional cellular model for the Cl(X)× Cl(X)-graded minimal resolution
for the ideal IX ⊂ S of the diagonal embedding of X in X ×X:

L• : 0 −→ Lm −→ . . . −→ L2 −→ L1 −→ L0 = OX×X −→ OX×X/IX −→ 0.

Here we identify IX with the associated coherent sheaf IX ⊂ OX×X , which is the
ideal sheaf of the diagonal embedding of X. Note that S/IX is Cohen-Macaulay.

Since IX is a Cl(X) × Cl(X)-homogeneous ideal, we can write Li =
⊕mi

j=1O(−aij ,−bij) with aij ,bij ∈ Cl(X). Here O(−aij ,−bij) = O(−aij) £
O(−bij) = p∗1(O(−aij)) ⊗ p∗2(O(−bij)) denotes the exterior tensor product on
X×X of O(−aij) and O(−bij), and pi are the projections on the factors of X×X.

Let F be any coherent sheaf on X. By tensoring the above free resolution L•
with p∗1(F) we obtain a resolution C• for the restriction of p∗1(F) to the diagonal
X ⊂ X × X. As in the case of projective space [Bei], pushing via p2∗ a Cartan-
Eilenberg injective resolution of C• yields a double complex of OX -modules, whose
total chain complex has as cohomology the hyperdirect image Rp2∗(C•). One of the
spectral sequences belonging to the double complex Rp2∗(C•) yields the following
version of the Beilinson Spectral Sequence. It says that any coherent sheaf F can be
reconstructed from the knowledge of the cohomology of a few of its Cl(X)-twists.

Theorem 6.2 Let F be a coherent sheaf on a complete unimodular toric variety

X. Then there is a (third quadrant) spectral sequence with E1 term

Epq
1 =

⊕
j

Hq(F ⊗OX(−apj))⊗OX(−bpj)

which converges to the associated graded sheaf of a filtration of F .
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In the case of Pm, Beilinson’s spectral sequence induces an equivalence between
the derived category Db(Coh(Pm)) of bounded complexes of sheaves with coherent
cohomology, and the derived category of modules over the exterior algebra in m+1
generators. An analogous simple description of Db(Coh(X)) does not hold over an
arbitrary unimodular toric variety X, since the bundle E = ⊕i,jO(−aij) defined as
the direct sum (without repetitions) of all “left” summands in the above resolution
of the ideal sheaf of the diagonal is in general not exceptional, i.e. Exti

OX
(E , E) 6= 0

for some i > 0. See [AH] for a related approach to describing Db(Coh(X)).
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[Mu] M. Mustaţă: Vanishing theorems on toric varieties, preprint 1999.
[Oda] T. Oda: Problems on Minkowski sums of convex lattice polytopes,

Manuscript, 1997.
[PS] I. Peeva, B. Sturmfels: Generic lattice ideals, J. Amer. Math. Soc., 11,

(1998), no. 2, 363–373.
[RW] J. Roberts, J. Weyman: A short proof of a theorem of M. Hashimoto. J.

Algebra 134 (1990), no. 1, 144–156.
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