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Abstract. We study double structures on the projective line and on certain other

varieties, with a view to having a nice family of degenerations of curves and K3

surfaces of given genus and Cli�ord index. Our main interest is in the canonical

embeddings of these objects, with a view toward Green's Conjecture on the free

resolutions of canonical curves. We give the canonical embeddings explicitly, and

exhibit an approach to determining a minimal free resolution.
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Introduction

What is the limit of the canonical model of a smooth curve as the curve degen-
erates to a hyperelliptic curve? \A ribbon" | more precisely \a ribbon on P1" |
may be de�ned as the answer to this riddle. A ribbon on P1 is a double structure on
the projective line. Such ribbons represent a little-studied degeneration of smooth
curves that shows promise especially for dealing with questions about the Cli�ord
indices of curves.
The theory of ribbons is in some respects remarkably close to that of smooth

curves, but ribbons are much easier to construct and work with. In this paper we
discuss the classi�cation of ribbons and their maps. In particular, we construct
the \holomorphic di�erentials" | sections of the canonical bundle { of a ribbon,
and study properties of the canonical embedding. Aside from the genus, the main
invariant of a ribbon is a number we call the \Cli�ord index", although the de�nition
for it that we give is completely di�erent from the de�nition for smooth curves. This
name is partially justi�ed here, and but much more so by two subsequent works:
In the paper of Fong [1993] a strong smoothing result for ribbons is proved. In the
paper of Eisenbud-Green [1994] it is shown that the Cli�ord index of a ribbon may
be re-expressed in terms of a certain notion of generalized linear series, and the
semicontinuity of the Cli�ord index as a smooth curve degenerates to a ribbon is
established. Together, these results imply that any ribbon may be deformed to a
smooth curve of the same Cli�ord index.
Our original motivation for studying ribbons came from an attack on a conjecture

of Mark Green concerning the free resolution of a canonical curve. Before stating
the conjecture, we introduce two notions. If

I � S = k[x0; : : : ; xg�1]

is the homogeneous ideal of a canonically embedded curve C of arithmetic genus g,
then the free resolution of S=I is known to have the form

0! S(�g � 1) �! Sag�3(�g + 2)� Sbg�3(�g + 1) �!

: : : �! Sai(�i� 1)� Sbi(�i� 2) �! : : :

�! Sa1(�2)� Sb1(�3) �! S �! S=I ! 0

with ag�2�i = bi for all i. In this situation the free modules notated Sai(�i �
1) above form a subcomplex, which we think of as the \two-linear part" of the
resolution, since it begins with the quadrics in the ideal of the canonical curve and
continues with matrices of linear forms. Because of Green's conjecture, which we
are about to state, we will de�ne the resolution Clifford index of C to be
the length of the 2-linear part of this resolution | that is, the largest i for which
ai 6= 0.
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By contrast, the usual Clifford index of a smooth curve C of genus g � 3 is
de�ned as the maximum, over all line bundles L on C such that h0(L) > 1 and
h1(L) > 1 of the quantity

CliffL
def
= degreeL� 2(h0(L)� 1)

= g + 1� h0(L)� h1(L):

With this terminology, Green's Conjecture on canonical curves is the
assertion that the Cli�ord index and the resolution Cli�ord index agree for smooth
curves over an algebraically closed �eld of characteristic 0. In terms of the new
Cli�ord index we de�ne for a ribbon, we make the

Canonical ribbon conjecture. The resolution Cli�ord index and the Cli�ord

index agree for ribbons over a �eld of characteristic 0.

Because of the smoothing results of Fong [1993] and Eisenbud-Green [1994 Propo-
sition 2.3], a proof of our conjecture for some ribbon of each genus and Cli�ord index
would imply Green's conjecture for a generic curve of each Cli�ord index (that is,
for a generic curve in some component of the locus of curves of each Cli�ord index).
The restriction to characteristic 0 is really necessary in both cases, since examples
of Schreyer for smooth curves and examples given below for ribbons show that the
conjectures sometimes fail in �nite characteristic.
Perhaps the most important di�erence between the case of ribbons and in the

case of smooth curves is that two smooth curves of the same Cli�ord index and
genus may have di�erent graded betti numbers, but the graded betti numbers of a
ribbon are completely determined by the genus and Cli�ord index. This is because
all ribbons of given genus and Cli�ord index are hyperplane sections of a particular
"K3 carpet" { a double structure on a 2-dimensional rational normal scroll (at
least over an algebraically closed �eld of characteristic 0, this is the unique double
structure on the scroll with trivial canonical bundle that can be embedded in the
ambient space of the usual embedding of the scroll { see Hulek and Van de Ven,
[1985]). K3 carpets are the subject of a planned paper by Eisenbud and Schreyer.
Aside from this, what we know about the canonical ribbon conjecture is rather

similar to what we know of Green's conjecture itself. We can prove the analogues of
Noether's and Petri's Theorems, which deal with the cases of Cli�ord index 1 and
2. We can also prove, by machine computation, that the conjecture is true in all
cases up to genus 12 (see the table of results at the end of section 8). The proofs of
these special cases are quite di�erent in the case of ribbons, and are in a sense more
direct and algebraic, than in the case of smooth curves, so that we are hopeful that
the study of ribbons will be useful in further work on Green's conjecture.
We next discuss the material of this paper in more detail: The �rst section below

is devoted to the general theory of ribbons. Here we work with double structures
on a more general reduced scheme D. First we classify the ribbons on D by certain
extensions of the sheaf of di�erentials of D (this familiar idea goes back at least
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to Lichtenbaum-Schlessinger [1967]). Next we describe morphisms: given a mor-
phism from D to another scheme X, we explain what data is necessary to describe
morphisms from the ribbon to X. From this description we show how to tell when
the extended morphism is a closed immersion. In case X is a projective space, we
further explain how to tell whether the image of the ribbon is \arithmetically of
depth � 2", the analogue of the condition \projectivly normal" for smooth vari-
eties. Finally we show that the morphisms from the ribbon to another ribbon on D
which induce the identity on D are precisely those obtained by blowing up closed
subschemes of D.

For most of the rest of the paper we specialize to the case where the underlying
scheme D is the projective line over an algebraically closed �eld k (although many
of our results could be generalized at least to the case where D is a nonsingular
curve over an arbitrary �eld). We will call such a ribbon a rational ribbon, or
simply a ribbon when the context is clear.

In section 2 we specialize the classi�cation theory to rational ribbons. Here the
two fundamental invariants are the (arithmetic) genus and the Cli�ord index. The
latter is de�ned in terms of the restricted cotangent sequence. An alternate, and
perhaps the quickest de�nition is the following: We say that a ribbon is split, or
\hyperelliptic" if it is isomorphic to P1 � Spec k[�]=(�2) and we de�ne the Cli�ord
index of a ribbon C as the minimum number of blow-ups of C at reduced points
of Cred necessary to obtain a split ribbon. Some preliminary evidence is given that
this notion of Cli�ord index is the \right" one, in the sense that it parallels the
properties of the Cli�ord index for smooth curves. For example it is shown that
a ribbon of Cli�ord index a has a \generalized linear series" of dimension 1 and
degree a + 2 in a suitable sense. Much further justi�cation may be found in the
rest of the paper. Thus the theory of ribbons gives one direct access to curves of
arbitrary genus and Cli�ord index.

In section 3 we present a di�erent view of the construction and classi�cation
of ribbons, this time by gluing together ribbons on the a�ne line (such a ribbon
is necessarily of the form Spec k[s; �]=(�)2.) We give the translation between the
necessary \gluing data" and the data of the restricted cotangent sequence of the
ribbon. This version of the classi�cation, though somewhat computational, is nec-
essary for our treatment of line bundles, and in particular for our computation of
the canonical embedding of the ribbon.

In section 4 we discuss line bundles and their global sections on a ribbon. The
Picard group of line bundles on a ribbon of genus g is simply kg � Z, where the
second factor is given by the degree of the restriction of the line bundle to P1 (equal
to half the degree of the line bundle itself.) The line bundles of degree 0 form a
formally principle homogeneous space under the group H1(OP1(�g � 1)) �= kg, and
this accounts for the �rst factor. The global sections of line bundles are computed
in terms of an exact sequence coming from restriction to P1.

After these preliminaries, we turn to the main concern of the paper, the canonical
embedding of a ribbon. The canonical bundle is discussed in section 5, using the



RIBBONS AND THEIR CANONICAL EMBEDDINGS 5

theory developed in sections 3 and 4 to identify the global sections. We prove
\Noether's Theorem for Ribbons": the canonical series provides an embedding
of any non-hyperelliptic ribbon, and the canonical image is arithmetically Cohen-
Macaulay (and thus Gorenstein). (One of the proofs we give of this fact involves
knowing the structure of the normal bundle of the rational normal curve explicitly.
This structure is folklore, but we know no reference; we provide a proof, together
with the corresponding results for all the osculating bundles and their quotients,
in an appendix at the end of the paper.) The canonical embedding gives a third
view of the the classi�cation of ribbons: giving a non-hyperelliptic ribbon of genus
g is the same as giving a line bundle contained in the normal bundle of the rational
normal curve of degree g � 1.

In section 6 we present a result obtained jointly with Joe Harris which shows
that ribbons always represent smooth points on the Hilbert scheme of canonically
embedded curves.

Unlike the case of smooth curves, it is possible to deal with canonical embeddings
of ribbons by induction on the genus. To do this, we prove in section 7 that the
image in Pg�2 of the projection of a canonically embedded ribbon in Pg�1 from
a point on the ribbon is the canonical embedding of the ribbon obtained from C

by blowing up the point. This also leads to an easy proof of one inequality of the
canonical ribbon conjecture: The resolution Cli�ord index is always � the Cli�ord
index.

In this section we also show that the only nonhyperelliptic ribbon that can be
embedded in a smooth surface is the double conic in P2. This suggests one reason
why the theory of ribbons has not been pursued so much before: The double struc-
tures on P1 that one sees most often are all split ribbons, and thus not of much
interest.

We have already mentioned that all ribbons are hyperplane sections of suitable
(nonreduced) K3 surfaces. In the last section of the paper we give the part of the
theory of these K3 carpets which is most relevant to the canonical ribbon conjec-
ture, explaining in particular how to construct a nonminimal free resolution for the
homogeneous coordinate ring of a ribbon, and | conjecturally | how to make it
minimal. We include some numerical evidence, produced by the program Macaulay
of Bayer and Stillman [1990] for our conjectures, and thus for Green's Conjecture.

A quasi-mathematical remark: Each of the people who has worked on Green's
Conjecture probably has his/her own favorite nonmimal resolution of some degen-
erate curve of genus g, and a conjecture about minimalizing it that would imply
at least the generic case of Green's conjecture. So far as we know the method of
ribbons is the only one that gives such possibilities for the generic curve of each
Cli�ord index. There are several ways of making nonmiminal resolutions of rib-
bons, and attempting to minimalize them. The method of K3 carpets, presented in
section 8, seems to us the one with the fewest choices involved.

We are grateful as always to Joe Harris, for numerous helpful comments and
suggestions, as well as for a number of speci�c results, which are attributed to him
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below.

Throughout this paper, we work over a �xed �eld k. By a scheme we shall mean

a scheme of �nite type over k.
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1. General ribbons and their morphisms

We begin with some basic de�nitions and remarks. Throughout this section, D
will denote a reduced connected scheme over the ground �eld k.
A ribbon on D is a scheme C equipped with an isomorphism D ! Cred; the

reduced scheme of C; such that the ideal sheaf L of D in C satis�es

L
2 = 0:

Because of this condition, L may be regarded as a sheaf on D, and we further
require that

L is a line bundle on D:

Note that the subscheme D is determined by C as Cred: The line bundle L is the
conormal bundle of D in C.
A ribbon is simply a scheme C which is a ribbon on Cred.
We shall say that the the ribbon C is split if the inclusion D ,! C admits a

retraction C ! D.
The following result is an elementary but important special case of the Classi�-

cation Theorem below:

Proposition 1. Given a reduced connected scheme D and a line bundle L on D

there is a unique split ribbon on D with conormal bundle L:

Proof. If we embed D in the total space X of L, then the �rst in�nitesimal neigh-
borhood of D in X is a split ribbon on D with conormal bundle L.
To prove uniqueness, let C be any split ribbon with conormal bundle L. Because

C is split, the natural exact sequence

0 ����! L ����! OC ����! OD ����! 0

is a sequence of OD-modules. It is split as a sequence of OD-modules because the
identity element of OC lifts the identity element of OD. Because L

2 = 0, the algebra
structure of OC is determined by the module structure of L.

There are also lots of ribbons that are not split|we shall see in the next section
that the simplest example is given by the quartic plane curve whose equation is
the square of that of a nonsingular conic in P2. To classify the nonsplit ribbons,
we will say that two ribbons C and C 0 on D are isomorphic over D if there
is an isomorphism between them that extends the identity on D: More generally,
a morphism C ! C 0 over D is by de�nition a morphism extending the identity
morphism D ! D.
Given a ribbon C on D with conormal bundle L we de�ne the restricted

cotangent sequence of C to be the natural short exact sequence

0 �! L �! 
C jD �! 
D �! 0:
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The restricted cotangent sequence de�nes the extension class

eC 2 Ext1D(
D;L)

of C.
The following classi�cation is closely related to the ideas of Lichtenbaum and

Schlessinger [1967]:

Theorem 1.2 (Classi�cation Theorem). Given any line bundle L on a reduced

connected scheme D, and any class

e 2 Ext1
D
(
D;L)

there is a unique ribbon C on D with e = eC :

If D is proper over k and e0 2 Ext1
D
(
D;L) is another class, corresponding to a

ribbon C 0, then C �= C 0 i� e = ae0 for some a 2 k�.

Proof. Let d : OD ! 
D be the canonical derivation, and consider an extension

e : 0 �! L �! E
�

�! 
D �! 0:

De�ne OC as a sheaf of abelian groups to be the pullback

OC ����! OD??y
??yd

E ����!
�


D

so that we have the commutative diagram

0 ����! L ����! OC ����! OD ����! 0



??yd0

??yd
e : 0 ����! L ����! E ����!

�


D ����! 0:

We make OC into a sheaf of k{algebras as follows: if a1; a2 are sections of OD over
an open set U of D, and x1; x2 are sections of E over U with

dai = �xi

so that each (ai; xi) is a section of OC on U , we de�ne

(a1; x1)(a2; x2) = (a1a2; a1x2 + a2x1);



RIBBONS AND THEIR CANONICAL EMBEDDINGS 9

the last being again a section of OC because d is a derivation. We may now de�ne

C = SpecOC

and check that it is a ribbon on D. It is also easy to check that

d0 : OC ! E

is the universal k-linear derivation ofOC to anOD-module. Thus d0 is the restriction
of the universal k-linear derivation, and

E �= 
C jD

is the restriction of the module of di�erentials 
C . This shows that C is a ribbon
with extension class e, proving the �rst part of the Theorem.
To prove the second part, note �rst that if C and C 0 are ribbons over D then a

morphism f : C ! C 0 over D is a map f� : OC0 ! OC of sheaves of k-algebras
inducing the identity on OD. Such a map induces a map of the restricted cotangent
sequences

0 ����! L ����! 
C jD ����! 
D ����! 0

�

??y �

??y





0 ����! L0 ����! 
C0 jD ����! 
D ����! 0

where � is the map induced by df� and � is the map induced by �. If f is an
isomorphism, then the � is an isomorphism and it follows that � is too. Since D is
reduced, connected, and proper over k, and L is a line bundle, the only automor-
phisms of L are the elements of k�, so � 2 k�. The given map of exact sequences
corresponds to the map induced by � on Ext1D(
D;L), so that e and e

0 di�er by an
element of k� as required.
Conversely, any element of k�, regarded as a map

� : L ! L0 ;

induces an isomorphism of exact sequences as above. Using the constructions of C
and C 0 from their restricted cotangent sequences, we may reverse the process and
see that if e and e0 di�er by an element of k� then C �= C 0.

Corollary 1.3. If D is a smooth a�ne variety over k, then every ribbon on D is

split.

Proof. In this case 
D is a projective OD{module, so

Ext1
D
(
D;L) = 0: �
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Corollary 1.4. If D is reduced, connected, and proper over k, then the set of

nonsplit ribbons on D with conormal bundle L; up to isomorphism over D; is

in one{to{one correspondence with the points of the projective space of lines in

Ext1
D
(
D;L): �

So far our classi�cation has been up to \isomorphism over D", that is, up to
isomorphisms inducing the identity on D. It is easy to turn this into a classi�cation
up to abstract isomorphism:

Corollary 1.5. If D is reduced, connected, and proper over k, then the set of

isomorphism classes of nonsplit ribbons C such that Cred �= D; and such that the

conormal bundle of Cred is isomorphic to a given line bundle L on Cred; is the

projective space of lines in Ext1
D
(
D;L) modulo the group of automorphisms of D

preserving L.

Proof. Given a ribbon C as in the Corollary, two choices of the structure of a ribbon
on D di�er by a unique element of AutD:

The morphisms from a ribbon C to a scheme X admit a simple description in
terms of the induced map f : D = Cred ! X: Given such a map f , we write
df : f�
X ! 
D for the induced map on the sheaves of di�erentials, and we write

df� : Ext1
D
(
D;L) �! Ext1

D
(f�
X ;L)

for the map induced by df on Ext. Note that if C is a ribbon, and f : D ! C is
the inclusion, then f�
X = 
C jD. We shall often write 
X jD for f�
X also in the
general case.

Theorem 1.6. If C is a ribbon on D with restricted cotangent sequence

0 �! L �! 
C jD �!
�


D �! 0;

then the morphisms from C to a scheme X extending a given morphism f : D ! X

are in one to one correspondence with the splittings of the exact sequence df�eC ;

that is, with the maps of sheaves

g : 
X jD ! 
C jD

making the diagram


X jD
df

����! 
D

g

??y






C jD ����!
�


D

commutative.
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In particular a morphism extending f exists i�

df�eC = 0:

Proof. Since OC is a sheaf of k-algebras on D, f�OC is a sheaf of k-algebras on X,
and the morphisms ~f : C ! X extending f are in one-to-one correspondence with
the maps of algebras ~f# : OX ! f�OC lifting the map f# : OX ! f�OD:

Since f� is left exact, f�OC is the pullback of the diagram

f�OD??y
f�
C jD ����!

f
�
�

f�
D:

Thus the desired algebra maps are in one-to-one correspondence with the derivations
of sheaves OX ! f�
C jD lifting the derivation

OX
f
#

��! f�OD �! f�
D:

Such derivations correspond uniquely to maps of sheaves of modules

g0 : 
X ! f�
C jD

making the diagram


X
df

����! f�
D

g
0

??y





f�
C jD
f
�
�

����! f�
D

commute. By the adjointness of f� and f
�, such g0 are in one-to-one correspondence

with the maps g described in the Theorem.

Corollary 1.7. If C is a ribbon on D with restricted cotangent sequence eC , then

the maps f : C ! D such that the composite

D ,! C
f

�! D

is the identity are in one to one correspondence with the splittings of eC . �

The following gives a useful criterion for a map from a ribbon to be a closed
immersion. Given a closed immersion into projective space, it also tells us when the
homogeneous coordinate ring of the image has depth � 2, which is the analogue for
ribbons of projective normality for smooth varieties.
If f : C ! X is a morphism such that f jD is a closed immersion, then we shall

write N 0

D;f
for the pullback to D of the conormal sheaf of f(D) in X; that is,

N 0

D;f

def
= f�(If(D)=X=I

2
f(D)=X);

where If(D)=X is the ideal sheaf of f(D) in X. In this situation we de�ne �f :
N 0

D;f
! L to be the pullback of the quotient map If(D)=X ! If(C)=X .
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Theorem 1.8. Let C be a ribbon on D with conormal bundle L.

(1) If

f : C ! X

is a morphism, then f is a closed immersion i� the restriction of f to D is

a closed immersion and �f is an epimorphism.

(2) If

f : C ! Pr

is a closed immersion, and the homogeneous coordinate ring of f(D) has

depth � 2, then the homogeneous coordinate ring of f(C) has depth � 2 i�

the map

�f�(n) : H
0(N 0

D;f (n))! H0(L(n))

induced by �f is surjective for all integers n.

Proof. (1) f is a closed immersion i� the induced map f# : OX ! f�OC is an
epimorphism, and similarly for the restriction of f to D. Since D is a subscheme of
C, it is clear that f can be a closed immersion on C only if it is a closed immersion
on D. Now suppose that f is a closed immersion on D and consider the diagram

0 ����! ID ����! OX
f
#

����! f�OD ����! 0??y
??y





0 ����! f�L ����! f�OC ����! f�OD ����! 0:

From the snake lemma we see that the middle vertical map is an epimorphism i�
the left-hand vertical map is. Since f�L is supported on f(D) �= D, this map is an
epimorphism i� �f is, proving part (1).
(2) The homogeneous coordinate ring of f(C) has depth � 2 i� the map

f�(n) : H
0(OPr (n))! H0(OC(n))

induced by f is surjective for all integers n. Note that, because of our hypothesis
on D, the maps

f�(n) : H
0(OPr (n))! H0(OD(n))

are all surjective. Thus setting X = Pr in the above diagram, twisting by OPr (n),
and taking H0, the desired result follows again from the snake lemma.

The maps between ribbons on D which induce the identity map on D have a
particularly nice description: they are just the blow-ups of Cartier divisors on D

(these are Weil divisors on C). First we analyze such blow-ups.
Let � � D be an e�ective Cartier divisor in D, and let C be a ribbon on D with

conormal bundle L and extension class eC . Let � : L ! L(�) be multiplication by
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a section of OD(�) corresponding to �, and let C 0 be the ribbon corresponding to
the extension class

eC0 = �(eC);

where we have written � again for the induced map

Ext1
D
(
D;L)! Ext1

D
(
D;L

0):

With this notation we have:

Theorem 1.9. If X ! C is the blow up of C along �, and C 0 is the ribbon corre-

sponding to �(eC) as above, then X �= C 0, and the blow up map corresponds to the

map of exact sequences

0 ����! L(�) ����! 
C0 jD ����! 
D ����! 0

�

x??
x??





0 ����! L ����! 
C jD ����! 
D ����! 0

induced by �.

Proof. The matter is local on C, so we may assume that C = SpecA, that L is
the trivial bundle, so that the nilpotent ideal of A is generated by one element y,
and that the ideal of � in D is principal. Let x 2 A be any element of A lifting
the generator of the ideal of � in OD(D) = A=(y). Since � is Cartier, x is a
nonzerodivisor on A=(y) and thus on A. Of course y2 = 0. With these choices it is
easy to check that

C 0 = SpecA[y=x];

where A[y=x] is the subring generated by y=x in the localization A[x�1].
Consider now the blowup. Let B = A � (x; y) � (x; y)2 � : : : , so that X =

Proj(B). Since y is nilpotent X is a�ne, and we have X �= Spec(B[x�1]0). Since
(x; y)n = xn�1(x; y), we get B[x�1]0 = A[y=x] as required.

It follows that we can describe all maps of ribbons over D in these terms. For
simplicity we stick to the case where D is irreducible:

Corollary 1.10. Suppose that D is irreducible, and let f : C 0 ! C be a map of

ribbons over D. If the image of f is contained in D, then C 0 is split and f is the

projection. Otherwise, f is the blowup of C along a subscheme that is a Cartier

divisor in D.

Proof. Let L and L0 be the conormal bundles of C and C 0. The map


C jD ! 
C0 jD

corresponding to f induces a map � : L ! L0 as in the preceding Theorem. Since
D is irreducible, � is an inclusion corresponding to some Cartier divisor �. The rest
follows as in the Theorem.
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2. Rational ribbons 1: The restricted cotangent sequence

In this section we shall suppose that the �eld k is algebraically closed, and we shall

consider only ribbons C on D = P1 = P1
k
. Here the classi�cation described in

Section 1 becomes much more concrete.
As usual with curves, the fundamental invariant of C is its genus, here de�ned as

the arithmetic genus

g(C) = 1� �(OC) = 1� H0
OC + H1

OC :

From the additivity of � and the fact that �(OP1(n)) = n + 1 we see that C has
genus g i� the conormal bundle L of P1 = Cred in C is OP1(�g � 1).
C is split i� the the inclusion D ,! C admits a section. Such a section is a

map C ! P1, which will have degree 2 in the sense that the scheme-theoretic
�ber of a point in P1 has length 2. Conversely, any degree 2 map f : C ! P1,
induces a degree 1 map fred : D ,! C ! P1. Composing f with the inverse of this
isomorphism of P1 we obtain a section of D ,! C. Because of this we will call C
hyperelliptic if C is split.
We have used the word hyperelliptic because hyperelliptic ribbons have many

properties in common with smooth hyperelliptic curves. As a �rst example, we
note that if g � 2, then there are no nontrivial maps 
P1 ! OP1(�g � 1), so by
Corollary 1.7 there is at most one splitting of eC , and the two to one map C ! P1

is unique if it exists. On the other hand, in the cases g = 0 and g = 1 there are,
again by Corollary 1.7, one-parameter and two parameter families of such two to
one maps, respectively, just as in the case of smooth curves.
From Corollaries 1.4 and 1.5 we deduce:

Theorem 2.1. The set of nonhyperelliptic ribbons of genus g on P1, up to isomor-

phism on P1, is the set

Pg�3 = P(H0(OP1(g � 3)));

the space of 1-quotients of H0(OP1(g � 3)).
The set of abstract isomorphism classes of nonhyperelliptic ribbons of genus g on

P1 is thus this set modulo AutP1.

Proof. By Corollary 1.4, it is enough to identify the lines in

Ext1D(
D;OP1(�g � 1)) = H1(
�D 
OP1(�g � 1))

= H1(OP1(�g + 1));

with the 1-quotients of H0(OP1(g � 3)), and this is simply Serre duality.

For ribbons on P1 we may write the restricted cotangent sequence in the simple
form

0! OP1(�g � 1)! OP1(�a� 2)�OP1(�b� 2)! OP1(�2)! 0
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for some integers a and b with 0 � a � b � g � 1 and a+ b = g � 1. We de�ne the
Clifford index of C to be the integer a. Note that the sequence and thus the
ribbon is split, that is, hyperelliptic, i� a = 0, as for a smooth curve. And just as
in the case of smooth curves, the Cli�ord index takes values from 0 to (g � 1)=2.
To give a sequence of the sort above, it su�ces to specify the right-hand map

OP1(�a� 2)�OP1(�b� 2)! OP1(�2);

which must be an epimorphism of sheaves. If we choose coordinates, and thus iden-
tify the homogeneous coordinate ring of P1 with the polynomial ring in 2 variables
S = k[s; t], then such a map is given by a pair of homogeneous polynomials � and �
of degrees a and b respectively. The condition that the map be an epimorphism is
then simply the condition that �; � is a regular sequence, and the restricted cotan-
gent sequence itself is the Koszul complex of �; � twisted by �2. We shall write
IC = (�; �) for the ideal associated in this way to the ribbon C. It is easy to see
that IC is an invariant of the sequence eC and thus of C.
To make a connection with Theorem 2.1 we recall a result that seems to have been

discovered by Macaulay. To express it, we write Sd for H
0(OP1(d)), the vectorspace

of homogeneous forms of degree d.

Theorem 2.2. There is a one-to-one correspondence between hyperplanes in Sg�3
and ideals generated by regular sequences (�; �) � S whose generators have degrees

a; b with a+ b = g� 1, given as follows: If I = (�; �) � S is such an ideal, then the

subspace

H(I) = (�; �) \ Sg�3

is a hyperplane; and if H � S is a hyperplane, then the ideal I(H) consisting of all
homogeneous polynomials 
 of degree c � g � 3 such that


(s; t)g�3�c � H

together with all forms of degrees > g � 3 is generated by a regular sequence of

elements of suitable degrees. �

In the situation of the Theorem, we will call any functional � : Sg�3 ! k with
kernel H(I) a dual socle generator for I. The following additional information
is also well-known:

Proposition 2.3. The lines in

Ext1
D
(
D;OP1(�g � 1)) = H1(
�

D

OP1(�g � 1)) = (H0(OP1(g � 3)))�

spanned by the class of the Koszul complex of (�; �) and the class of a dual socle

generator for (�; �) are the same. �

Thus the element in
P(H0(OP1(g � 3)));

associated by Theorem 2.1 to a ribbon C is the same as the element corresponding
to a dual socle generator f for IC .
Using this, we can make the classi�cation theorem more geometric:
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Corollary 2.4. A ribbon C on P1 is determined by the set of divisors � � P1 such

that the blowup of C along � is hyperelliptic.

In fact, if we write � 2 S for a polynomial de�ning the divisor �, then the set of

divisors

f�jthe blow up of C along � is hyperellipticg

is the same as the set of forms

f�j� 2 ICg:

In particular, the Cli�ord index of C is the minimal number of blowups of C at

reduced points necessary to reach a hyperelliptic ribbon.

Proof. If we write C 0 for the blown up ribbon, then eC0 is obtained by pushing
forward the sequence eC along the map induced by �,

0 ��! L(�) ��! 
C0 jD ��! 
D ��! 0

�

x??
x??





0 ��! L

(��
�
)

���! OP1(�a� 2)�OP1(�b� 2)
(�;�)
���! OP1(�2) ��! 0

where L = OP1(�g � 1), and it is obvious that the upper sequence splits i� � 2

IC = (�; �).

Corollary 2.4 provides another signi�cant justi�cation for using the name \Cli�ord
index" for the invariant of a ribbon that we have de�ned:
We de�ne a generalized linear series of degree n and dimension r on a

ribbon C to be an ordinary linear series (line bundle and space of sections) of degree
n� d on the blow up of C at some divisor � of length d in D. Note that blowing up
C corresponds to removing base points; if C were smooth, we could remove base
points without changing C, so that the given de�nition is a natural extension of the
smooth case.
From Corollary 2.4 we can say that a ribbon of Cli�ord index a has a generalized

linear series of degree a + 2 and dimension 1, corresponding to a linear series of
Cli�ord index a (in the usual sense!). For this we need only take the degree 2 map
to P1 of the hyperelliptic a-fold blowup guaranteed by the Corollary.
We shall see that there is a good notion of torsion free sheaf on a ribbon corre-

sponding to the notion of generalized linear series, and also that C does not have
any generalized linear series of dimension 1 and degree n for n < a + 2 | that is,
none of Cli�ord index less than the Cli�ord index of the ribbon. The same is true of
generalized linear series of higher dimension, as is proved in Eisenbud-Green [1994].
The same technique proves:

Corollary 2.5. The ideal IC0 corresponding to the blow up C 0 of C along � is the

\quotient"

(IC0) = (IC : I�)
def
= f
 2 Sj
I� � ICg;
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where I� is the ideal in S of the subscheme �.

In particular, when � is a single point, we have

Cli� C 0 < Cli� C

i� either Cli� = (g � 1)=2 or � is a zero of the (unique) lowest degree form in

IC . �

Using the dual socle, we can make explicit the strati�cation of the set of ribbons
P(H0(OP1(g � 3))) by Cli�ord index. The following necessary results are well-
known in the theory of vector bundles. Let

X � P(H0(OP1(g � 3)))

be the rational normal curve of one-quotients H0(OP1(g � 3)) ! k corresponding
to evaluations at points of P1.

Proposition 2.6. Let f be an element of H0(OP1(g � 3))�, regarded as a point in

P(H0(OP1(g � 3))). If I is the ideal whose dual socle is f , then I contains a form

of degree � a i� f lies in an a-secant (a� 1){plane to X.

Thus the set of ribbons of Cli�ord index � a corresponds to the union of the a�1-
planes a-secant to X. (Here we count limits of such planes as also being a-secant |
for example tangent lines are considered 2-secant lines.)
Writing f in terms of a basis (sitg�3�i)? of H0(OP1(g � 3))� dual to the monomial

basis of H0(OP1(g � 3)) determined by the choice of coordinates s; t, say as

f =

g�3X
i=0

fi(s
itg�3�i)?;

we can express the secant loci, and thus the sets of ribbons of Cli�ord index � a
given number, as special determinantal varieties:

Proposition 2.7. With notation as above, f lies in an a-secant (a � 1){plane to

X i� the rank of the \catalecticant" matrix satis�es

a � rank

0
BB@

f0 f1 : : : fa�1
f1 f2 : : : fa

: : : : : :
. . . : : :

fb�1 fb : : : fa+b�2

1
CCA :

In fact the ideal of a� a minors of the catalecticant matrix is the whole homoge-
neous ideal of the corresponding secant locus, and this remains true for the a � a
minors of any a0 � b0 catalecticant matrix0

BB@
f0 f1 : : : fa0�1
f1 f2 : : : fa0

: : : : : :
. . . : : :

fb0�1 fb0 : : : fa0+b0�2

1
CCA ;

as long as a � a0; b0; see Gruson-Peskine [1982] for a proof.
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3. Rational ribbons 2: Gluing

Again in this section we shall consider ribbons C on D = P1. We shall write g

for the genus of C.
Since ribbons on the a�ne line are all split, it is useful to regard ribbons on D

as being obtained by gluing together ribbons on the a�ne line. In this section we
use this gluing to give another view of the classi�cation of ribbons.
In the next section we shall exploit gluing to analyze line bundles and their

sections, to locate the canonical bundle, and to form the canonical map of a ribbon
to projective space.
We begin by �xing notation: we shall regard D as glued together out of two open

sets

u1 = Spec k[s];

u2 = Spec k[t]

via the identi�cation
s�1 = t

on u1 \ u2.
If C is a ribbon on D, then by Corollary 1.3, we may write

U1
def
= C ju1

�= Spec k[s; �]=�2

U2
def
= C ju2

�= Spec k[t; �]=�2;

and C may be speci�ed by giving an appropriate gluing isomorphism between these
two schemes over the set u1 \ u2.
Since the ideal sheaf L �= OP1(�g � 1) of D in C is generated on u1 by � and on

u2 by �, and since the gluing isomorphism must restrict to the one already speci�ed
on D, we see at once that it can be written in the form:

� = t�g�1�

s�1 = t+ F (t)�

on u1 \ u2, with some

F (t) 2 k[t; t�1] = OP1(u1 \ u2):

Conversely, any such gluing data de�nes a ribbon of genus g on P1.
If we change the coordinates on U1 and U2 to s

0 and t0 with

s0 = s+ p(s)�

t = t0 + q(t)�
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where p(s) and q(t0) are polynomials, then we have

s0�1 = s�1 � s�2p(s)�

= t+ F (t)� + (t+ F (t)�)2p(s)t�g�1�

= t+ (F (t) + t�g+1p(t�1))�

= t0 + q(t)� + (F (t0 + q(t)�) + (t0 + q(t)�)�g+1p((t0 + q(t)�)�1))�

= t0 + (F (t) + t�g+1p(t�1) + q(t))�;

where we have repeatedly used the facts that

s� = t�1�

t� = t0�

etc. Also, if we multiply s or t by a scalar then F will be multiplied by the same
scalar. From this we see that F is determined (at best) as an element of the
projective space of lines in the quotient

k[t; t�1]=(k[t] + t�g+1k[t�1]):

On the other hand, using the covering of P1 by u1 and u2, this quotient may
be identi�ed via �Cech cohomology as H1(OP1(�g � 1)). We have seen in the last
section that the lines in this vector space classify the ribbons on P1. The main
result of this section is that these two classi�cations are the same:

Theorem 3.1. Let

F 2 k[t; t�1]

be a Laurent polynomial. If C is the ribbon de�ned by gluing U1 and U2 as above,

then F is proportional to the class eC of the restricted cotangent sequence of C in

H1(OP1(�g + 1)) = k[t; t�1]=(k[t] + t�g+1k[t�1]):

.

We must exhibit a construction of the restricted cotangent sequence by gluing.
On U1 we have


C jU1= (OCds�OCd�)=2�d�

so that
(
C jD) ju1= ODds�ODd�;

and the restricted cotangent sequence, restricted further to u1, takes the form

0!< d� >!< d� > � < ds >!< ds >! 0;
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where we have written < x > for the free module with basis element x. Of course
we have a similar sequence, with t and � on u2. On the intersection u1\u2 we have
�dt = �d� = 0 so

d� = t�g�1d�

ds = �t�2dt� t�2Fd�:

Thus the gluing takes the form

(�)

< d� > ����! < d� > � < ds > ����! < ds >

t
�g�1

??y
??y�

??y�t�2
< d� > ����! < d� > � < dt > ����! < dt >

where we have written � for the matrix

�
�t�g�1 �t�2F

0 �t�2

�
:

To show that F is proportional to the class of restricted cotangent sequence in

H1(OP1(�g + 1)) = k[t; t�1]=(k[t] + t�g+1k[t�1]);

it su�ces to show that F is proportional to the image of 1 2 H0
OP1 under the

connecting homomorphism

� : H0
OP1 ! H1

OP1(�g + 1)

induced by the restricted cotangent sequence twisted by OP1(2).
The e�ect of the twist is to replace the gluing diagram (*) by the diagram

< d� > ����! < d� > � < ds > ����! < ds >

t
�g+1

??y
??y�1

??y�1
< t2d� > ����! < t2d� > � < t2dt > ����! < t2dt >

where now �1 is the matrix �
�t�g+1 �F

0 �1

�
:

We may compute the connecting homomorphism � from this gluing description:
the �Cech 1-cocyle representing �(1) = �(ds) 2 H1(OP1(�g + 1)) is obtained by
taking

t2dt� �1(ds)
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as an element of
OP1(�g + 1) ju1\u2 :

Since this is �F , we are done. �

Using the ideas developed in the last section, we may rephrase this result in terms
of the ideal IC associated to the ribbon. The Laurent polynomial F determines a
linear form on the set of polynomials in t by the rule

h 7! residuet=0 Fh:

The usual duality between H1(OP1(�g + 1)) and H0(OP1(g � 3))is given by re-
stricting this functional to the polynomials of degree � g� 3, and identifying these
with the forms of degree g � 3 in s and t. In this way we may regard F as a
functional on Sd�3, and as such we have:

Corollary 3.2. F is a dual socle generator for the ideal IC of the ribbon de�ned

by F . �



22 DAVE BAYER AND DAVID EISENBUD

4. Line bundles on ribbons

Again in this section we shall consider ribbons C on D = P1, and we shall write g

for the genus of C.
In this section we shall explain how to classify the line bundles on a rational

ribbon, and we shall compute the sections of a given line bundle. In the next
section we shall apply these ideas to �nd and study the canonical bundle.
Unfortunately, we do not know a method of describing a line bundle on a ribbon

C in terms of some structure on the underlying P1 analogous to the method of the
restricted cotangent sequence for describing OC itself. Thus we shall use a gluing
description analogous to the ideas developed in the last section. In particular, we
shall make use of the notation developed in the last section for the gluing of C by
means of the Laurent polynomial F . However, we can take a few steps before using
coordinates:
First we compute the Picard group of C:

Proposition 4.1.

PicC = H1(OP1(�g � 1))� Z
�= kg � Z;

where the projection to the Z factor is given by associating to a line bundle L the

degree of the restriction L jD.

Proof. From the exact sequence

0! L! OC ! OD ! 0

we derive an \exponential sequence"

0! L! O�
C
! O

�

D
! 1

by sending a local section � 2 L to 1 + � 2 O�
C
. Taking cohomology, we get

0! H1(L)! PicC ! PicD ! 1;

where the last map represents restriction to D. Since

PicD �= Z

via the degree and

H1(L) = H1(OP1(�g � 1))
�= kg;

this gives the desired conclusion.

As in the smooth case, the fundamental invariant of a line bundle L is its degree,
here de�ned as

deg L
def
= �(L)� �(OC):

From the restriction sequence

0! LL! L! LjD ! 0

for L we see that the degree of L may be computed from the knowledge of LL
provided by the following result:
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Proposition 4.2. If L is a line bundle on C and LjD �= OP1(n) then LL �=
OP1(n� g � 1), and deg L = 2n.

Proof. Since L2 = 0 we have

L 
 L = L 
 LjD = OP1(n� g � 1):

On the other hand, we see by restriction to an a�ne open set that LL is a line
bundle, so the epimorphism L 
 L ! LL must be an isomorphism. The degree
computation now follows trivially.

To replace line bundles of odd degree, it seems that one must turn to torsion free
sheaves, which are line bundles on blowups of C, as we shall see later.
Next we turn to the question of sections of a line bundle. What we need is a

formula for the connecting homomorphism

�L : H0(LjD)! H1(LL)

associated to the restriction sequence. We shall get it in terms of gluing data for
the line bundle.
To construct line bundles by gluing, note �rst that all line bundles on one of the

sets Ui are trivial (one can see this, for example, from the analogue of the exact
sequence for the Picard group above, or by standard commutative algebra) so that
to give a line bundle L on C whose restriction to D is OP1(n) it is enough to specify
that

L = k[s; �]e1 on U1

L = k[t; �]e2 on U2

e1 = (t+ F�)n(1 +G�)e2 on U1 \ U2

for some G 2 k[t; t�1]. Conversely, any G 2 k[t; t�1] may be used in this way to
construct a line bundle L on C.
If we change coordinates on U1 and U2, say by

e1 = (1 +m(s)�)�1e01

e2 = (1 + n(t)�)e02;

then we get

e01 = (t+ F�)n(1 +G�)(1 +m(s)t�G�1�)(1 + n(t)�)e02

= (t+ F�)n(1 + (G+m(t�1)t�g�1 + n(t))�)e02

so that to specify L it is enough to give G as an element of

k[t; t�1]=(k[t] + t�g�1k[t�1]) = H1(OP1(�g � 1)):

We can now state the main result of this section:
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Theorem 4.3. Let L is a line bundle on C of degree 2n given by gluing data as

above. If p = p(t) is a polynomial of degree � n, so that pe2jD de�nes an element

� 2 H0(LjD) = H0(OP1(n));

then

�L(�) = �(p
0F + pG)

2 k[t; t�1]=(k[t] + tn�g�1k[t�1])

= H1(OP1(n� g � 1))

where p0 = @p(t)=@t:
Further, the space of sections of L restricted to U2 = Spec k[t; t�1] is the direct

sum of the space of elements q(t)�, for q a polynomial of degree � n � g � 1, and
the space of expressions of the form

p(t) + p1(t)�

where p(t) is a polynomial of degree � n satisfying �L(�) = 0 and p1(t) 2 k[t] is the
\polynomial part" of p0F + pG, that is,

p1(t) � p
0(t)F (t) + p(t)G(t) mod t�1k[t�1]:

Proof. The connecting homomorphism H0Ljp ! H1(LL) is obtained by comparing
liftings of � on U1 and on U2. We have

p(t)e2ju1\u2 = p(s�1)sne1ju1\u2

so that �L(�) is given as a �Cech cocycle by the element

p(t)e2 � p(s
�1)sne1

2 LL(U1 \ U2)

= OP1(n� g � 1)ju1\u2 :

Using the gluing formulas we get

p(t)e2 � p(s
�1)sne1

= p(t)e2 � p(t+ F�)(t+ F�)�n(t+ F�)n(1 +G�)e2

= p(t)e2 � p(t+ F�)(1 +G�)e2

= p(t)e2 � (p(t) + p0(t)F�)(1 +G�)e2

= �[p(t)G+ p0(t)F ]�e2;
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which gives the desired formula for �L.
The elements q(t)�e2, with q a polynomial of degree � n�g�1, clearly represent

the sections of LL. The rest of the sections of L are obtained by lifting sections �
of LjD that go to 0 under �L. Given such a section, represented say by p(t)e2 on u2
as above, we must �nd an expression

p(t) + p1(t)�

that is equal in k[t; t�1; �] = k[s; s�1; �] to some element coming from k[s; �]e1. But
we have just shown that

p(t)e2 � p(s
�1)sne1 = �[p(t)G+ p0(t)F ]�e2:

Take p1 as in the Theorem. Setting

r(t)�e2 = (p(t) + p1(t)�)e2 � p(s
�1)sne1;

we see that r(t) will have no polynomial part. That is, r(t) 2 k[t�1]: In addition, if
�L� = 0 then r(t) 2 tn�g�1k[t�1]. Thus

r(t)�e2 = r(s�1)(s�g�1�)sne1

= sn�g�1r(s�1)

2 k[s]�e1;

so that (p(t) + p1(t)�)e2 represents a section as claimed.



26 DAVE BAYER AND DAVID EISENBUD

5. The canonical embedding

Again in this section we shall consider ribbons C on D = P1, and we shall write g

for the genus of C. We shall continue to use the notation introduced in the previous
section.
As an application of the work done in the previous section, we can determine the

canonical line bundle and its sections. Note that a ribbon is locally Gorenstein,
so that the canonical sheaf really is a line bundle, and has degree 2g � 2 by the
Riemann-Roch formula.
If G(t) =

Pn

�n
ait

i 2 k(t) is a rational function, then we write

Gpolynomial
def
=

nX
0

ait
i

for the \polynomial part" of G.

Theorem 5.1. The restriction sequence of the canonical line bundle KC has the

form

0! OP1(�2)! KC ! OP1(g � 1)! 0:

The associated connecting homomorphism �C is 0, so that the induced linear series

on D is the complete series of degree g� 1. The gluing data of the canonical bundle

of C is given by

G = @F=@t;

so that the sections of KC are represented by the expressions

p+ (@(pF )=@t)polynomial �

where p ranges over the polynomials of degree � g � 1 in t. Thus if we take F of

the form

F (t) =

g�2X
i=1

Fit
�i

then the elements of a basis of global sections of KC restrict on U2 to the elements

ti +
i�2X
j=0

(j + 1)Fi�j�2t
j� (i = 0; : : : ; g � 1):

Proof. The form of the restriction sequence comes simply from the degree of KC ,
and thus from Riemann-Roch. From Riemann-Roch we also know that h0(KC) = g.
Since h0(OP1(g � 1)) = g while h0(OP1(�2)) = 0, this implies that

�KC
: H0(OP1(g � 1))! H1(OP1(�2))
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is 0. Further, since no other line bundle of degree 2g � 2 has as many sections as
the canonical bundle, this vanishing actually characterizes KC .
By the formula for �KC

given in Theorem 4.3, �KC
= 0 means that if G = G(t)

is the gluing data for KC , then

residuet=0 p0F + pG = 0

for all polynomials p = p(t) of degree � g� 1. Since the residue of the derivative of
a rational function is automatically 0, this can be achieved by taking

G = @F=@t;

so that
p0F + pG = @(pF )=@t:

By the remark above characterizing KC , this establishes the formula for G given in
the Theorem. The rest of the Theorem follows by direct computation from Theorem
4.3.

We next wish to show that the canonical linear series de�nes an embedding of C
as an arithmetically Cohen-Macaulay (even Gorenstein) subscheme of Pg�1. As a
�rst step we have:

Corollary 5.2. The canonical series on C is base point free.

Proof. It induces the complete series on D.

The following is the main result of this section. It continues the strict analogy
with the theory of smooth curves, and is the �rst stage of what might be called
\Green's conjecture for ribbons", which will be discussed below.

Theorem 5.3 (Noether's Theorem for Ribbons). Let the genus of C be g � 2.
If C is hyperelliptic, then the canonical map is the degree 2 projection onto P1

composed with the embedding of P1 into Pg�1 as the rational normal curve.

If C is not hyperelliptic, then the canonical series embeds C as an arithmetically

Gorenstein subscheme of Pg�1.

Proof. If C is hyperelliptic, then the form of the canonical sections given in Theorem
5.1 makes it clear that the canonical image of C is the rational normal curve of degree
g � 1. In particular, the map of C onto this image is 2 to 1, and since g � 2 there
is only one such map (see the remark at the beginning of section 2). Conversely,
we see that if the canonical image of C is the rational normal curve of degree d� 1,
then C is hyperelliptic.
Now suppose that C is not hyperelliptic. It is enough to show that the canonical

series de�nes an embedding of C as an arithmetically Cohen-Macaualay curve; the
fact that the embedding line bundle is the canonical bundle then implies that the
image is arithmetically Gorenstein.
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Since the restriction of the canonical series to D � C is the complete series, it
de�nes an embedding of D as an arithmetically Cohen-Macaulay curve. Writing
ID for the ideal sheaf of D � Pg�1, it is enough to show that the induced maps

H0(ID=I
2
D(n))! H0(L(n))

are onto for all n.
The following well-known lemma identi�es the sheaf involved:

Lemma 5.4. The conormal bundle to the rational normal curve D � Pr of degree

g � 1 is

ID=I
2
D
�= H0(OP1(g � 3))
OP1(�g � 1)

equivariantly for the action of SL(2).

Proof of Lemma 5.4. This is just the dual of a special case of Proposition 5A.2.

Returning to the proof of Theorem 5.3, we see that the natural map ID=I
2
D
! L

has the form

ID=I
2
D
�= OP1(�(g � 1))g�2

�

�! OP1(�(g � 1)) �= L

and is thus either identically 0 or a split epimorphism. The image of this map is in
either case ID=IC , where IC is the ideal sheaf of C. In the latter case we are done
by Theorem 1.8. In the former case we see that ID = IC , so that the canonical
image of C is the rational normal curve, and C is hyperelliptic by the remarks
above, contradicting our assumption.

As was pointed out to us by Joe Harris, one can also give a proof of \Noether's
theorem for ribbons" along the lines of Noether's original proof: First one may use
Riemann-Roch to estimate the number of conditions imposed by a subscheme of
length 2 and thus show that the canonical map is a closed immersion.
Next one checks the number of quadratic (and then cubic : : : ) equations satis�ed

by the curve by checking the number of conditions imposed on quadrics by the
general hyperplane section. For a reduced nonhyperelliptic curve of genus g the
general hyperplane section of the canonical embedding consists of 2g + 2 points in
linearly general position in Pg�2 , and it is easy to see that such a set of points
imposes at least 2g+1 conditions on quadrics. In the case of a ribbon, the hyperplane
section consists of g + 1 double points. But these are again in general position in
a suitable sense, as one may show by a monodromy argument; see for example
Eisenbud-Harris [1992] and, for a more general study, Chandler [1994].
We isolate for future use a piece of information from the proof of Theorem 5.3:

Corollary 5.5. If C � Pg�1 is a nonhyperelliptic ribbon in its canonical embed-

ding, and IC � ID are its ideal sheaf and that of the underlying rational normal

curve D = P1, then

ID=IC �= OP1(�g � 1)
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is a direct summand of the conormal bundle

ID=I
2
D
�= OP1(�g � 1)g�2

�

We remark that the proof of the Theorem indicates a third view of the classi�-
cation of ribbons: To specify a non-hyperelliptic ribbon of genus g in its canonical
embedding one must simply give a corank 1 direct summand of the conormal bun-
dle of the rational normal curve of degree g � 1 | this subbundle, together with
the square of the ideal of the rational normal curve, generates the ideal of the rib-
bon. By Lemma 5.4, such a summand is speci�ed by an element of the dual of
H0(OP1(g � 3)), up to scalars. This is the same element that speci�es the gluing
data or the dual socle generator, as the reader may check.
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6. Canonical ribbons are smooth points of Hilb

Again in this section we shall consider ribbons C on D = P1, and we shall write g

for the genus of C.

In this section we shall show that ribbons all lie in the smooth locus of the Hilbert
scheme of canonical curves. The result is from joint work with Joe Harris.

Theorem 6.1. If C � Pg�1 is a nonhyperelliptic ribbon in its canonical embedding,

then C represents a smooth point of the Hilbert scheme of curves of genus g and

degree 2g � 2, lying on a component of dimension (3g � 3) + (g2 � 1)

The given dimension is of course also the dimension of the component containing
the smooth curves, and in fact Fong [1993] shows that they are the same.

Proof. Let D = Cred �= P1 as usual, and write IC and ID for the ideal sheaves of
C and D in the canonical embedding of C in Pg�1. Let

NC = HomC(IC=I
2
C ;OC)

be the normal sheaf.
Because C is locally a complete intersection, NC is a vector bundle of rank g� 2

on C and it su�ces to show that h0(NC) = g2 + 3g � 4 and h1(NC) = 0 (see
for example Sernesi [1986, Corollaries 8.5 and 8.6].) To do this, we shall use the
restriction sequence

(�) 0 �! NC jD 
OP1(�g � 1) �! NC �! NC jD �! 0;

and we must determine the bundle NC jD. Since IC=I
2
C

is a vector bundle, the
operations of taking its dual and restricting it to D commute, and we get

NC jD = HomC(IC=I
2
C
;OC)jD

= HomD(IC jD=IC j
2
D
;OD)

= HomD(IC=ICID;OD):

By Corollary 5.6, IC=I
2
D
�= OP1(�g � 1)g�3, so HomD(IC=ICID;OD) has a sub-

bundle isomorphic to OP1(g + 1)g�3. To compute the quotient, note that it is a
line bundle; thus to make the computation, it su�ces to know the �rst chern class
of NC jD.
Again because C is locally a complete intersection, we may calculate the chern

class of NC just as we would in the case where C is smooth: that is, we have

OC(1) = !C

= ^g�2NC 
 !Pg�1

= ^g�2NC 
OPg�1(�g)

= ^g�2NC 
OC(�g);
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so

c1(NC) = c1(^
g�2NC)

= OC(g + 1):

Of course the restriction of the �rst chern class is the �rst chern class of the restric-
tion, so

c1(NC jD) = OD(g + 1)

= OP1((g + 1)(g � 1)):

Subtracting the �rst chern class of the subbundle we already know, we see that
NC jD �ts into an exact sequence

(��) 0 �! OP1(g + 1)g�3 �! NC jD �! OP1(2g + 2) �! 0:

Putting the exact sequences (*) and (**) together, we see at once that

h0(NC) = g2 + 3g � 4

h1(NC) = 0;

as required.
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7. Surfaces containing ribbons

Again in this section we shall consider ribbons C on D = P1 = P1
k
, and we shall

write g for the genus of C. Moreover, we assume that k is algebraically closed.

In a certain sense the singularities of a ribbon are quite mild: they are \locally
planar", so that for example a ribbon is locally a complete interesection (in any
embedding).
However, the fact that every point is singular leads to some signi�cant di�erences

from the theory of reduced curves with locally planar singularities. In this section
we prove a theorem that highlights such a di�erence. While any reduced projective
curve with locally planar singularities is contained in many smooth surfaces, this is
not the case for ribbons:

Theorem 7.1. Up to isomorphism of a�ne neighborhoods, the only pair

C � S

where C is a nonhyperelliptic ribbon and S is a surface that is smooth along C, is

the double conic in the projective plane.

Proof. If D = Cred � S, with S a smooth surface, then the ideal sheaf L of D � C is
the conormal bundle of D in S. If the arithmetic genus of C is g then deg L = g+1,
so D2 = g + 1. If g � 2 then C is automatically hyperelliptic, so it su�ces to treat
the case g � 3. Hartshorne's Theorem on curves of high self-intersection [1969,
Thm. 4.1] says that if D2 � 4 genus(D)+5 = 5, then either D � S is a nonsingular
cubic in the projective plane, or else S is ruled and D is a section. In the former
case, D would not be rational. In the latter case there is a projection from S back
to D that induces a morphism C ! D, showing that C is hyperelliptic. This proves
Theorem 7.1 in the case D2 = g + 1 � 5.
It remains to treat the case D2 = 4; g = 3. We claim that a smooth rational

curve D of self-intersection 4 on a smooth surface S is (up to equivalence of a�ne
neighborhoods) either a smooth conic in the plane or a section on one of the rational
ruled surfaces F0; F2; F4. This su�ces to prove Theorem 7.1, since in the latter case
the projection from S to D de�nes a a two-to-one map from C to D, so that C is
hyperelliptic.
The claimed result is certainly known to experts on surfaces, but for want of a

reference we sketch a proof. Let KS be the canonical divisor class of S. Since D is
rational, we see from the adjunction formula that KS �D = �6. Thus no multiple
of KS can be e�ective. By the Enriques classi�cation, S is rational or ruled. If S is
ruled with base B, then since D has positive self-intersection it cannot be contained
in a �ber; thus B is rational, so S is rational in any case. In particular, �(OS) = 1.
Now H0(OS(KS)) = 0, and thus

H2(OS(D)) = H0(O(KS �D)) = 0:

By the Riemann-Roch formula on S,

H0(OS(D)) � D � (D �K)=2 + �(OS) = 6:
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The restriction of OS(D) to D has degree 4, and thus the associated line bundle
OD(D) has 5 independent global sections. The exact sequence

0! H0
S
! H0(OS(D))! H0(OD(D))

shows that h0(OS(D)) = 6, and the restriction map H0(OS(D))! H0(OD(D)) is
surjective.
It follows that the complete linear series jDj associated to D on S has no base

points on D, and thus no base points anywhere; it de�nes a morphism � from
S to P5 of degree 4. Since �(S) is nondegenerate it cannot have degree < 4, so
we see that � is birational, that its image is a surface of degree 4 in P4. Since
the self-intersection of D is the same as the self-intersection of the the hyperplane
section of �(S) that is the image of D, we see that � does not blow down any curves
meeting D. That is, � is biregular in a neighborhood of D, so we may assume that
S = �(S) � P5 from the outset.
According to the Del Pezzo-Bertini classi�cation of surfaces of minimal degree,

S is either a ruled surface F0 or F2, or a cone over the rational normal quartic,
which away from the vertex is F4 or S is the Veronese embedding of P2 in P5; see
for example Eisenbud-Harris [1987]. In the former cases D is a section of S (not
containing the vertex, in the case where S is a cone) so C is hyperelliptic by the
argument above. In the latter case C � S is isomorphic to the conic in the plane,
as required.

Of course any ribbon can, by Bertini's theorem, be embedded in a surface with
only isolated singularities, and these can be kept away from any �nite set of points
on the ribbon. It would be interesting to know more about the number and type
of singularities that a ribbon imposes on a surface containing it (Our attention was
drawn to this question by M. Boraty�nsky). The easiest way to produce a surface
containing a given ribbon in projective space is to project the ribbon from a point,
and take the cone over the image. This image is the canonical image of another
ribbon:

Theorem 7.2. If C � Pg�1 is a ribbon in its canonical embedding, and p 2 C is

a reduced point on C, then the image of C under projection from p is the image of

the canonical map from the ribbon C 0 obtained by blowing up C at p.

Proof. Projection de�nes a morphism from the blowup of Pg�1, and thus also from
the blowup C 0 of C. The restriction of this morphism to Cred = C 0

red
= P1 is given

by the complete series of degree g � 2. It follows that the corresponding series on
C 0 has degree 2(g � 1) � 2 and (linear) dimension g � 1; since the genus of C 0 is
g � 1, this must by Riemann-Roch be the canonical series.

As a consequence we see inductively that the Cli�ord index is related to the
length of the 2-linear part of the free resolution of a canonical ribbon, at least by
an inequality. The result is the \easy half of the canonical ribbon conjecture":



34 DAVE BAYER AND DAVID EISENBUD

Corollary 7.3. The 2-linear part of the free resolution of a canonical ribbon of

genus g and Cli�ord index c has length at least g � 2� c.

Proof. The 2-linear part of the resolution of a subscheme of projective space is
always at least as long as the 2-linear part of the resolution of any subscheme
containing it. Since the resolution of the cone in Pg�1 over a subscheme C 0 of Pg�2

has the same graded betti numbers as the resolution of C 0 in Pg�2, and since the
blowup of a non-hyperelliptic ribbon C at a suitable point will have Cli�ord index
one less than that of C by Corollary 2.5, we are inductively reduced to the case of
the resolution of the canonical image of a hyperelliptic ribbon, which is of course
the rational normal curve. But in this case | the case c = 0 | the resolution is
well known (it is given by the Eagon-Northcott complex) and the result is true.

More concretely, the method shows that a ribbon of genus g and Cli�ord index a
is contained in the cone over a rational normal curve of degree g � 1� a, and thus
that the free resolution of the ribbon contains that of the rational normal curve.
A simple example will illustrate the results of this section:

Example: The canonical ribbon of genus 4

Let C � P3 be a canonically embedded ribbon of genus 4. The Cli�ord index of C
is necessarily 1, and C is the complete intersection of a cubic and quadric. The ideal
IC associated to C as in section 2 is generated by a linear form and quadratic form
on P1. By choosing coordinates s; t appropriately we may assume that IC = (s; t2).
It follows that the blowup of C at the reduced point p given by s = 0 in Cred is a
hyperelliptic ribbon. By Theorem 7.2, the image of C under projection from p is
the reduced conic in P2. The ribbon thus lies on the cone over this conic, and this
is the unique quadric containing C.
Choosing coordinates on P3 appropriately we may assume that Cred is the ratio-

nal normal curve D de�ned by the 2� 2 minors of the matrix�
x0 x1 x2
x1 x2 x3

�

and the quadric cone containing C is given by the equation x0x2� x
2
1 = 0, while C

itself is closure in the cone of the \double" of the divisor that is 2D away from the
vertex of the cone (D is not Cartier at the vertex.) The cubic form necessary to
generate the homogeneous ideal of C (which is unique modulo the ideal of D) may
be written as the determinant of the matrix0

@x0 x1 x2
x1 x2 x3
x2 x3 0

1
A :

The corresponding cubic surface has a double line, and a total of 4 singular points
on the rational normal curve, none of them at the vertex of the quadric cone; the
general cubic in the ideal of C has 4 singular points, all on the rational normal
curve, bearing out Theorem 7.1.
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8. Free resolutions

We assume for simplicity that the ground �eld k has characteristic 0, .

The material in this section was partially developed in conversation with Frank
Schreyer and Joe Harris.

It turns out that all canonically embedded rational ribbons of given genus and
Cli�ord index are hyperplane sections of a single surface, which is itself a ribbon
on a rational normal scroll. This surface has the same numerical invariants as a
smooth K3 surface; Following terminology suggested by Frank Schreyer, we shall
call it a K3 carpet. In this section we explain the construction of K3 carpets, and
we prove that the natural embedding of a K3 carpet of sectional genus g into Pg

is arithmetically Cohen-Macaulay. It follows that all ribbons of given genus and
Cli�ord index have minimal free resolutions with the same graded betti numbers;
in particular, the canonical ribbon conjecture is true for all of them if it is true for
one. To check the conjecture, it would su�ce to compute a minimal free resolution
of each K3 carpet.

In this secction we shall compute a nonminimal resolution of a K3 carpet, and we
shall explain how to measure its nonminimality in terms of certain maps of vector
spaces de�ned by elementary multilinear algebra. In particular, we explain some
conjectures that would imply the canonical ribbon conjecture.

The description of the nonminimal resolution is facilitated by the observation that
any K3 carpets is an anti-canonical divisor on a certain (reduced) 3-fold (depending
only on the genus and degree of the plane section of the K3 carpet) that thus
appears as a degenerate Fano 3-fold J in Pg+1. The Fano 3-fold J is extremely
easy to describe: is simply the join variety of a pair of rational normal curves. It is
equally easy to describe its minimal free resolutions F , which is the tensor product
of two Eagon-Northcott complexes. The minimal free resolution of the canonical
line bundle !J on this Fano 3-fold is F �, the dual of F , up to a shift in degrees. It
follows easily that a (nonminimal) free resolution of a K3 carpet may be constructed
as a mapping cone of a map of complexes F � ! F . This map is only unique up
to homotopy, but it has a canonical representative that is equivariant with respect
to the SL(2) actions on the two rational normal curves. Most of the work in this
section is devoted to an explicit construction of this canonical representative.

Let S(a; g � 1 � a) be a rational normal scroll, the union of lines joining corre-
sponding points on a rational normal curve of degree a and a rational normal curve
of degree g � 1� a in Pg According to [Hulek-Van de Ven, 1985] there is a unique
double structure X on S(a; g � 1 � a), a ribbon on S(a; g � 1 � a) in the sense
of section 1 of this paper, with trivial canonical bundle. We shall call this double
structure a K3 carpet. We give a construction of this carpet below.

Fix integers 1 � a � b and let g = a+ b+ 1. In Pg we consider a pair of disjoint
linear spaces Pa and Pb, and the rational normal curves Da � Pa and Db � Pb.
Let J be the join of these two rational normal curves; that is, J is the union of
the lines joining points of Da to points of Db. The K3 carpet X in which we are
interested lies as an anticanonical divisor on J .
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If we write Ra and Rb for the homogeneous coordinate rings of Da and Db in
Pa and Pb respectively, then the homogeneous coordinate ring of J in Pg is RJ =
Ra 
k Rb, graded by total degree. We regard Ra and Rb as homomorphic images
of polynomial rings Ta and Tb in a+ 1 and b+ 1 variables, respectively.
Writing !a and !b for the canonical modules of Ra and Rb, the canonical module

of RJ is given by !J = !a 
k !b. Further, we have

HomRJ
(!J ; RJ) = HomRa

(!a; Ra)
k HomRb
(!b; Rb):

Identifying Da with P1 = P(V ), where V is a 2-dimensional vector space, we have
!a = OP1(�2), and a moment's argument gives

HomRa
(!a; Ra)0 = H0(OP1(2)) = S2(V );

the second symmetric power of V . Making the corresponding identi�cations for Db
with P1 = P(W ) for another 2-dimensional vectorspace W , we get

HomRJ
(!J ; RJ)0 = S2(V )
k S2(W ):

Since !J is a torsion free RJ -module of rank 1, every nonzero map is a monomor-
phism. We set

X� = ProjRJ=�(!J):

Since RJ=�(!J) is a 3-dimensional Gorenstein ring with trivial canonical divisor,
X� may be regarded as a K3 surface, and it's hyperplane sections will be canonically
embedded curves.
As we have already remarked, the reduced structure on a K3 carpet is a rational

normal scroll. In the terms above, such a scroll is determined by making an identi-
�cation of Da with Db, that is, by identifying V with W . We may regard such an
identi�cation as an element of Homk(V;W ), or, using the identi�cation of V and
V � that we may make because V is 2-dimensional, with an element of V 
k W .
Squaring this, we get an element of S2(V ) 
 S2(W ) corresponding to the carpet
X. (Note that if we were not working in characteristic 0, some further care would
be necessary!) Thus we see that the K3 carpets are quite special elements of the
family X�. It is not too hard to show that the general element may be described
as follows: we may associate to � a divisor E� of type (2; 2) on P1�P1 = Ca�Cb,
or equivalently as a correspondence of type (2; 2) from Ca to Cb; generally, E� will
be an elliptic curve, but it may degenerate to twice a conic, or become reducible.
The union of the lines in Pg joining corresponding points is X�. A hyperplane H
in Pg cuts Ca in a points and Cb in b points. Thus it determines on E� a set of a
pairs of points and a set of b pairs of points. The hyperplane section H \X� is an
embedding of E� with these a+ b pairs of points identi�ed.
It is easy to write down a minimal free resolution of RJ over the polynomial ring

T = Ta 
 Tb, the homogeneous coordinate ring of Pg: it is obtained by tensor-
ing together (over k) a minimal free resolution of Ra over Ta and a minimal free
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resolution of Rb over Tb. These resolutions may be written, equivariantly for the
action of GL(V ) and GL(W ), as Eagon-Northcott complexes. Further, the minimal
resolution of !J is the dual of the minimal resolution of RJ . A chosen element �
of S2(V ) 
 S2(W ), regarded as a map !J ! RJ , lifts (uniquely up to homotopy)
to a map �� of these resolutions. The mapping cylinder of �� is a resolution of the
homogeneous coordinate ring RX�

of the K3 surface.
To obtain from this construction the graded betti numbers in a minimal resolution

of RX�
, it su�ces to �nd the rank of the degree 0 (in the sense of the grading from

T ) part of the map �� of complexes. Because the Eagon-Northcott complexes and
their tensor product are minimal, the degree 0 part of �� is actually unique, and will
thus be GL(V )�GL(W )-equivariantly de�ned from �. We now make this explicit.

Anticanonical divisors on the rational normal curve

We �rst recall the resolution of Ra over Ta. To simplify the notation, write Si
for the free Ta-module Si(V )
k Ta. The resolution Fa has the form:

Ta
�1
 � ^

2Sa�1(�2) : : :
�m
 ��^

m+1 Sa�1 
 Sm�1(�m� 1)
�m+1

 ��� : : :

�a�1
 ��� ^

aSa�1 
 Sa�2(�a) � 0:

The resolution of !a is the dual complex F�(�a� 1), which may conveniently be
rewritten, using the isomorphisms (^mSa�1)

� �= ^a�mSa�1 given by a choice of a
free generator for (^aSa�1)

� as

Sa�2(�1)
 1
 � ^

1Sa�1 
 Sa�3(�2) : : :
 m
 �� ^

mSa�1 
 Sa�2�m(�m� 1)
 m+1

 ��� : : :

 a�2
 ��� ^

a�2Sa�1 
 S1(�a+ 1)
 a�1
 ��� Ta(�a� 1) � 0:

The map !a ! Ra corresponding to an element x 2 S2(V ) is given on generators
by

Sa�2(V )
�0(x)
���! (Ta)1 = Sa(V ) e 7! xe

and lifts to a map �(x) : F�(�a� 1)! F given by the formulas

^
mSa�1 
 Sa�2�m(�m� 1)

�m(x)
����! ^

m+1Sa�1 
 Sm�1(�m� 1)

e
 f 7!
X
i

e ^ (xuif)
 u
0

i

for 1 � m � a � 2, where for some basis v1; v2 2 V the elements ui and u0
i
are

de�ned by the condition that

X
i

ui 
 u
0

i
2 Sm�1(V )
 Sm�1(V )
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is the \trace" element
(v1 
 v2 � v2 
 v1)

m�1:

The key point of the proof that the �i(x) commute with the �i and  i is the
formula X

i;j

�jei 
 �
0�

j
(ei) = 0;

where
P
j
�j 
 �

0�

j
2 V 
 V � is the usual trace element, and the action �0�

j
(ei) of V

�

on Sm�1(V ) is by derivations. We omit the details.
We can get a better idea of the nature of the maps �(x) as follows. The mapping

cylinder of �(x) is a (nonminimal) resolution of an anticanonical divisor A = A(x)
on the rational normal curve Ca. Now an anticanonical divisor A on Ca is simply a
divisor of degree 3 | that is, a scheme of three points. Of course A spans a 2-plane.
The minimal free resolution of OA in Pa is the tensor product of the resolution of
A in the plane and the resolution of the plane itself, which is a Koszul complex.
Note that for 1 � m � a� 3 the maps �m(x) are matrices of scalars. Their kernels
and cokernels must add up to the minimal free resolution of Oa. Comparing these
sequences we deduce a self-dual family of natural exact sequences

0 �! ^m+1Sa�2 �! ^
mSa�1
Sa�2�m

�m(x)
����! ^

m+1Sa�1
Sm�1 �! ^
m�1Sa�2 �! 0:

associated with x 2 S2V . (To prove this, �rst compute the kernel of �m(x) by
comparing the minimal resolution and the mapping cylinder, as above; then use the
fact that �m(x) is isomorphic to the dual of the map �a�1�m(x).)
As suggested by the notation, we may regard �m(x) as a family of maps of free

modules de�ned over the polynomial ring in 3 variables Q := k[S2(V )], and in these
terms the exact sequences above become complexes

0 �! ^m+1Sa�2(�m) �!^m Sa�1 
 Sa�2�m
�m
��!

^
m+1 Sa�1 
 Sm�1(1) �! ^

m�1Sa�2(a�m):

over Q. For example, if we take m = 1, we get the resolution of the (a� 1�m)th

power of the maximal ideal of Q, written in a peculiar way. It would be interesting
to understand these complexes in general.

Anticanonical divisors on J

The minimal free resolution of RJ over T is

F := Fa 
k Fb;

and the minimal free resolution of !J is

G := F�
a

k F

�

b
(�g � 1):
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Given an element � :=
P
xi 
 yi 2 S2(V ) 
 S2(W ), we get a (nonminimal)

resolution of the homogeneous coordinate ring of the corresponding anticanonical
divisor X� by taking the mapping cylinder of the map of complexes

�� =
X
i;j

�(xi)
 �(yj) : G ! F :

The canonical ribbon conjecture, which says that the minimal free resolution of X�

has no (a� 1)st syzygies of degree a+ 1 when � is a square of an element of rank
2 is thus equivalent to the statement that for generic � the map

��;a�1 : (Ga�1)a+1 �! (Fa�1)a+1

is surjective. Of course proving the surjectivity for general would prove the analogue
of Green's conjecture for some other degenerate K3 surface of Cli�ord index a, which
would be just as interesting.
Writing out the terms in question, one must show that for all m;n with m �

1; n � 1;m+ n = a� 1 < b the map

X
i;j

�m(xi)
 �n(yj) : ^
mSa�1 
 Sa�2�m 
 ^

nSb�1 
 Sb�2�n �!

^
m+1Sa�1 
 Sm�1 
 ^

n+1Sb�1 
 Sn�1

is surjective for suitable xi and yj .

The star construction

We can abstract the construction above as follows: Since we are interested in
these things for generic values of the xi and yj we might as well take these as
variables. The maps �m and �n used above are then de�ned over the polynomial
rings Q = k[x1; x2; x3] and Q

0 = k[y1; y2; y3] respectively.
Suppose, in general, that we are given a map d : F ! G of free modules over Q =

k[x1; : : : ; xs] and another map d0 : F 0 ! G0 of free modules over Q0 = k[y1; : : : ; yt].
Suppose further that, as in the case above, each of these maps is represented by a
matrix of linear forms. We de�ne a map

d � d0 : F 
k F
0
! G
k G

0;

the \star product" of d and d0, over the ring ~Q := k[zi;j ]1�i�s;1�j�t, by taking
d
k d

0 over the ring Q
k Q
0, and then replacing the product xiyj by the variable

zi;j . This is legitimate because the natural map ~Q! Q
kQ
0 maps the linear forms

of ~Q isomorphically to the bilinear forms of Q
kQ
0. To show that the maps above

are surjective for generic choice of xi and yj is to show that are the *-products of

the \easy" maps �m and �n have maximal rank over ~Q.
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It may clarify matters to give a simple example. If we are to have a nontrivial
computation then we must have m � 1; n � 1;m+n = a�1 and a � b; g = a+b+1.
The �rst case in which this is possible is a = b = 3; g = 7. Here we must take
m = n = 1. In this case d2 is just the middle map of the koszul complex in 3
variables

�2(x1v
2
1 + x2v1v2 + x3v

2
2) =

0
@ 0 v3 �v2
�v3 0 v1
v2 �v1 0

1
A :

Of course these maps have rank only 2; they are not themselves of maximal rank
since they are skew symmetric and of odd size. However, the star product

�2(x1v
2
1 + x2v1v2 + x3v

2
2) � �2(y1v

2
1 + y2v1v2 + y3v

2
2) =

0
BBBBBBBBBBBBBBB@

0 0 0 0 z3;3 �z3;2 0 �z2;3 z2;2
0 0 0 �z3;3 0 z3;1 z2;3 0 �z2;1
0 0 0 z3;2 �z3;1 0 �z2;2 z1;1 0

0 �z3;3 z3;2 0 0 0 0 z1;3 �z1;2
z3;3 0 �z3;1 0 0 0 �z1;3 0 z1;1
�z3;2 z3;1 0 0 0 0 z1;2 �z1;1 0

0 z2;3 �z2;2 0 �z1;3 z1;2 0 0 0
�z2;3 0 z2;1 z1;3 0 �z1;1 0 0 0
z2;2 �z2;1 0 �z1;2 z1;1 0 0 0 0

1
CCCCCCCCCCCCCCCA

is of maximal rank as long as the characteristic of k is not 2; it is a symmetric 9� 9
matrix with zeros on the diagonal, so in characteristic 2 it can have rank only 8. The
exception for characteristic 2 corresponds precisely to Schreyer's observation that
the general canonical curve of genus 7 does NOT in fact satisfy Green's conjecture.
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Numerical evidence

We �nish by exhibiting the betti numbers for canonical ribbons of Cli�ord index
� 2 and genus � 12, as computed by the program Macaulay [1990], in characteristic
31,991. We give only the \2-linear" part. The rest may be reproduced by using the
symmetry of the resolution. Thus a listing

genus index

7 2 10 16 9

is to be read as the assertion that a rational ribbon of genus 7 and Cli�ord index 2
has a minimal free resolution of the form

O  � O(�2)10  � O(�3)16 �O(�4)9  � O(�4)9 �O(�5)16

 � O(�6)10  � O(�8) � 0;

where O denotes OPg�1(a) = OP6(a). In the notation used by the \betti" operation
of the program Macaulay this would be written

1 - - - - -

- 10 16 9 - -

- - 9 16 10 -

- - - - - 1

The following betti numbers were computed by Macaulay:

genus index

5 2 3
6 2 6 5
7 2 10 16 9
8 2 15 35 35 14
9 2 21 64 90 64 20
10 2 28 105 189 189 105 27
11 2 36 160 350 448 350 160 35
12 2 45 231 594 924 924 594 231 44

genus index

7 3 10 16
8 3 15 35 21
9 3 21 64 70 24
10 3 28 105 162 119 35
11 3 36 160 315 336 210 48
12 3 45 231 550 756 672 342 63

genus index

9 4 21 64 70
10 4 28 105 162 84
11 4 36 160 315 288 100
12 4 45 231 550 693 455 125
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genus index

11 5 36 160 315 288
12 5 45 231 550 693 330

These numbers support the Canonical Ribbon Conjecture stated at the beginning
of this paper.
It is interesting to compare these betti numbers with those computed by Schreyer

[1986] for smooth curves of Cli�ord index � 2, genus � 8, over a �eld of charac-
teristic 0. For curves of Cli�ord index 2 and genus 7 or 8, the betti numbers of
the smooth curves agree with the corresponding betti numbers of the ribbons if the
curve has a g26. In the case of a smooth curve of Cli�ord index 2 with no g26, the
betti numbers computed by Schreyer are instead:

genus index

7 2 10 16 3
8 2 15 35 25 4
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Appendix: Osculating bundles of the rational normal curve

We assume for simplicity that the ground �eld k has characteristic 0, although our
results could be reformulated for the case of arbitrary k.
The following results identify the quotients of any two osculating bundles of the

rational normal curve in terms of the representation theory of SL(2). Though
special cases, at least, are well known, we do not know a convenient reference. For
simplicity, we work over a �eld k of characteristic 0, although the second of the two
proofs we give for the main result may be adapted to work in any characteristic.
For each r, let P1 �= D � Pr be the rational normal curve, and let Tr = TPr jP1

be the restricted tangent bundle. There is an obvious embedding TP1 = T1 � Tr,
and in fact the Tm form a 
ag of bundles

0 � T1 � T2 � � � � Tr : : : :

In terms of the embedding in a given Pr, this 
ag is realized geometrically as the

ag of osculating bundles of D:

Proposition 5A.1. The subbundle of Tr whose �ber at a point p 2 D is the set

of tangent vectors lying in the osculating m-plane to D at p is isomorphic to Tm.

Further, the inclusions Tm � Tn obtained in this way are independent of r.

Proof. For the proof we shall need a more formal description of the subbundle of
Tr whose �bers are the osculating m-planes: we shall temporarily call it Oscm.
If we write L for the line bundle OP1(r) on D, and let Pm(L) be the bundle of

principle parts of L of order m, then there is a natural map H0(L)
OD ! P
m(L)

that, locally at each point, takes a section to its Taylor series. Let Em be the image
of the dual map, twisted by L. The bundle that we have called Oscm is the image
of Em under the natural map H0(L)�
L! TPr jD; that is, there is a commutative
diagram

0 ����! OD ����! Em ����! Oscm ����! 0??y
??y

??y
0 ����! OD ����! H0(L)� 
 L ����! TPr jD ����! 0;

see Piene [1977] for details.
We shall show that the osculating bundles and inclusions are the same in Pr and

Pr�1 by projecting from a point p of the rational normal curve D. In particular,
Tr�1 = Oscr�1. By induction this proves the Theorem.
Write L = OP1(r) for the embedding line bundle. The natural inclusion L(�p) �

L induces diagrams

0 ����! Osc�n
L ����! Pn(L) ����! L ����! 0

�

x?? �

x?? 


x??
0 ����! Osc

�

n

 L(�p) ����! Pn(L(�p)) ����! L(�p) ����! 0
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where we have written Oscn for the osculating bundle of the rational normal curve
in Pr�1. To show that Oscn �= Oscn it su�ces to show that the map labelled
� in the diagram is isomorphic to the inclusion of Osc�n
L(�p) in Osc�n
L, or
equivalently that the cokernel of � is the the sheaf k(p)n. Since the inclusions of
one osculating bundle in another are compatible with these commutative diagrams,
this will su�ce to show that the inclusions are also independent of r.
Since � and 
 are isomorphisms away from p, they are inclusions of sheaves, and

it follows that the same is true for �. Since the cokernel of 
 is obviously k(p), it
su�ces to show that the cokernel of � is k(p)n+1. Since locally Pn(L) looks likeP
n

0 L
 dt
i this is clear.

To describe the quotients Tm=Tn equivariantly we need a notation for the rep-
resentations of SL(2). If V is a 2-dimensional vectorspace, S := Sym(V ) is the
symmetric algebra, and we identify the rational normal curve as D = ProjS, then
SL(2) = SL(V ) acts naturally on D and on

Sn : = Symn(V )

= H0(OP1(n));

and these are the irreducible representations of SL(V ).

Proposition 5A.2. With notation as above,

Tm=Tn �= Sm�n�1 
OP1(m+ n+ 1)

equivariantly for the action of SL(2).

We give two proofs { the �rst, which was suggested by Joe Harris, is appealingly
geometric. The second, by free resolutions, gives slightly more information, and is
essentially characteristic free.

Geometric Proof. First we compute chern classes: from the exact sequences

0! 
nD 
 L! P
n(L)! Pn�1(L)! 0

and the \initial case"
P
0(L) = L

we easily derive
c1(P

n(L)) = (n+ 1)(r � n);

from which we get
c1(Tm=Tn) = (m� n)(m+ n+ 1):

Next we shall show that Tm=Tn is a direct sum of equal line bundles so that, for
some SL(2) representation U, we have

Tm=Tn �= U 
OP1(m+ n+ 1)
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From the construction, it will appear that these line bundles can be chosen from
a single family parametrized by a 1-dimensional projective SL(2) orbit. Since the
only representations of SL(2) whose projectivization contains such a curve are the
irreducible representations Sj , this will conclude the proof. (Here we are using the
characteristic 0 hypothesis.)
It remains to produce the family of subbundles. The curve P1 = D � Pm will

itself form the parameter space: for each point p 2 D we de�ne a line bundle
M [p] � Tm whose �ber at a point x 2 D other than p is the line spanned by x

and p, regarded as a line in the tangent space to Pm at x modulo the osculating
n-plane to D at x. This de�nes M [p] as a bundle on D � p. There is of course a
unique extension of M [p] to a bundle on all of D: its �ber at p is the osculating
(n+ 1)-plane at p modulo the osculating m-plane.
We claim that for any set of m� n distinct points p1; : : : ; pn�m on D, we have

Tm=Tn = �m�n1 M [pi]:

This follows from the fact that any collection of osculating spaces to the rational
normal curve is \as linearly independent as possible": in our case, if the line bundles
in question failed to span at some point x, then the osculating n-space at x together
with the points pi (or the osculating (n+1)-space at x together with all the pi if x
is one of the pi) would be contained in a hyperplane, which would then meet D at
least m+ 1 times, contradicting the fact that the degree of D is m.

Algebraic Proof. We shall actually make explicit the maps in the sequences de�ning
the bundles Tm and in the exact sequences

0 �! Tn �! Tm �! Sm�n�1 
OP1(m+ n+ 1):

All the maps of bundles with which we are concerned are of two types, which we
shall �rst desribe abstractly. Let

�a;b : Sa ! Sa+b 
 Sb

be the map of SL(2)-representations obtained by multiplying with the canonical
\trace" element in Sb 
 Sb. As an element of Sb 
 Sb this is (s
 t� t
 s)

b where
s; t is a basis of V = S1. If we write ŝ; t̂ 2 V

� for the basis dual to s; t 2 V then the
usual trace element is s
 ŝ+ t
 t̂ 2 V 
 V �. Under the equivariant identi�cation
V � �= �2�1V = V , which sends

ŝ 7! t t̂ 7! �s

this trace element goes to the element s
 t� t
 s, which is why we call it the trace
as well.
This map induces an equivariant map of sheaves, for which we shall use the same

name:
�a;b : Sa 
OP1 ! Sa+b 
OP1(b):
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Explicitly, if i + j = a and we write [sptq] for the corresponding basis element of
Sp+q 
OP1 then

�a;b : [s
itj ] 7!

X
m+n=a+b

(�1)n�j
�

b

m� i

�
sn�jtm�i[smtn]:

The second type of map that we shall need is closely related. Let

 �a;b : Db(V
�)! Da+b(V

�)
 Sa;

where Db(V
�) denotes the bth graded component of the divided power algebra on

V �, be the map of SL(2)-representations obtained by multiplying with the canonical
\trace" element in Da(V

�)
Sa. In terms of the basis and dual basis for V and V �

introduced above, this element is the divided power

(ŝ
 s+ t̂
 t)(a) = ŝ(a) + ŝ(a�1)t+ ŝ(a�2) t̂(2) + : : : :

This map induces an equivariant map of sheaves, for which we use the same name

 �
a;b

: Db(V
�)
OP1 ! Da+b(V

�)
OP1(a):

Dualizing, twisting with OP1(a), and using the canonical isomorphism Dc(V
�)� �=

Sc that makes fsmtng the dual basis to fŝmt̂ng we get the map we want,

 a;b : Sa+b 
OP1 ! Sb 
OP1(a):

Explicitly, with notation as above: if m+ n = a+ b, then

 a;b : [s
mtn] 7!

X
i+j=b

�
m

i

��
n

j

�
sm�itn�j [sitj ]:

We claim that (always in characteristic 0) these maps form, for every a; b, an
exact sequence of sheaves:

Ea;b : 0 �! Sa�1 
OP1
�a�1;b
����!Sa+b�1 
OP1(b)

 a+b�1;a(b)
�������! Sb�1 
OP1(a+ b) �! 0:

In fact, we claim that Ea;b 
OP1(a+ 1) is isomorphic to the sequence

(�) 0 �! Ta �! Ta+b �! Tb �! 0:

Further, the \Euler sequence" de�ning Tb,

0 �! OP1 �! S�
b

OP1(b) �! Tb �! 0;
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is isomorphic to the sequence E1;b. Of course this will prove the Proposition.
First, to prove that the sequences Ea;b are exact, we appeal to the criterion of

exactness of Buchsbaum-Eisenbud [1973]. It is easy to check directly the the Ea;b
are complexes, and from inspection the ideals of maximal minors of the two maps
contain powers of both s and t, so the conditions of the criterion are immediate.
Next, that E1;b is the Euler sequence is also clear, since the map

OP1 �! S�b 
OP1(b)

in the Euler sequence is multiplication by the bth power of the trace element.
Finally, to identify the sequence (*) with Ea;b 
 OP1(a+ 1) it su�ces to show

that the diagram

0 0??y
??y

OP1 OP1??y
??y

Ea+1;b�1(a): 0 �! Sa(a)
�

�! Sa+b(a+ b)
 

�! Sb�1(2a+ b+ 1) �! 0

 

??y  

??y





Ea;b(a+ 1): 0 �! Sa�1(a+ 1)
�

�! Sa+b�1(a+ b+ 1)
 

�! Sb�1(2a+ b+ 1) �! 0??y
??y

0 0

commutes, where the two long vertical columns are the Euler sequences, and we
have written Sa(a) for Sa 
OP1(a), etc. Note that there is, up to scalar, only one
inclusion of representations

Sa � Sa+b 
 Sb

so the inclusion Tn � Tm induced by the diagram must be the geometrically de�ned
one.
Since all the maps have been given explicitly, this is presumably only an exercise.

But it is possible to say that the maps must commute. To see this, note that we
need only check the commutativity of the part involving the two Euler sequences,
since the commutativity of the lower right hand box (at least up to a scalar) is then
forced by the irreducibility of Sm. Similarly, to check the commutativity of the part
involving the Euler sequences (up to scalar), we need only check the commutativity
of the upper left hand box

OP1 OP1

�

??y �

??y
Sn(n)

�

����! Sm(m)
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because Sn is irreducible. This is easy, since the maps labelled � are all given by
multiplication by powers of the trace element.
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