Second Midterm Exam

Modern Algebra, Dave Bayer, March 31, 1999

Name: \qquad
ID: \qquad

School:

\qquad

$[\mathbf{1}](6 \mathrm{pts})$	$[\mathbf{2}](6 \mathrm{pts})$	$[\mathbf{3}](6 \mathrm{pts})$	$[\mathbf{4}](6 \mathrm{pts})$	$[\mathbf{5}](6 \mathrm{pts})$	TOTAL

Each problem is worth 6 points, for a total of 30 points. Please work only one problem per page, and label all continuations in the spaces provided. Extra pages are available. Check your work, where possible.
[1] Let G be the abelian group $G=\left\langle a, b, c \mid a^{7} b c^{2}=a b^{4} c^{5}=a b c^{2}=1\right\rangle$. Express G as a product of free and cyclic groups.
\qquad

Problem:
[2] What is the minimal polynomial of $\alpha=\sqrt{-1}+\sqrt{2}$ over \mathbf{Q} ?

Problem:
[3] Consider the module $M=F[x] /\left(x^{3}+3 x^{2}+3 x+1\right)$ over the ring $R=F[x]$ for a field F.
(a) What is the dimension of M as an F-vector space?
(b) Find a basis for M as an F-vector space, for which the matrix representing multiplication by x is in Jordan canonical form. Give this matrix.

Problem:
[4] Prove the Eisenstein criterion for irreducibility: Let $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbb{Z}[x]$, and let p be a prime. If p doesn't divide a_{n}, p does divide a_{n-1}, \ldots, a_{0}, but p^{2} doesn't divide a_{0}, then $f(x)$ is irreducible as a polynomial in $\mathbf{Q}[x]$.

Problem:
[5] Let R be a principal ideal domain, and let

$$
I_{1} \subset I_{2} \subset I_{3} \subset \quad \cdots \quad \subset \quad I_{n} \subset \cdots
$$

be an infinite ascending chain of ideals in R. Show that this chain stabilizes, i.e.

$$
I_{N}=I_{N+1}=I_{N+2}=\cdots
$$

for some N.

Problem:

