Final Exam
Modern Algebra, Dave Bayer, May 12, 1999

Name: \qquad
ID: \qquad School: \qquad

$[\mathbf{1}](5 \mathrm{pts})$	$[\mathbf{2}](5 \mathrm{pts})$	$[\mathbf{3}](5 \mathrm{pts})$	$[\mathbf{4}](5 \mathrm{pts})$
$[\mathbf{5}](5 \mathrm{pts})$	$[\mathbf{6}](5 \mathrm{pts})$	$[\mathbf{7}](5 \mathrm{pts})$	$[\mathbf{8}](5 \mathrm{pts})$
	TOTAL		

Please work only one problem per page, and label all continuations in the spaces provided. Extra pages are available. Check your work, where possible.
[1] Let $\mathbf{X}=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{C}$ be a finite set of points, where \mathbb{C} is the complex numbers. Define $I \subset \mathbb{C}[x]$ to be the set of all polynomials $f(x)$ that vanish on every point of \mathbf{X}. That is,

$$
I=\left\{f(x) \in \mathbb{C}[x] \mid f\left(a_{i}\right)=0 \text { for every point } a_{i} \in \mathbf{X}\right\}
$$

(a) Prove that I is an ideal.
(b) Give a set of generators for I.

Problem:
[2] What is the minimal polynomial of $\alpha=\sqrt{3}+\sqrt{5}$ over \mathbb{Q} ?

Problem:
[3] Let $f(x, y, z)=x^{3} y z+x y^{3} z+x y z^{3}$. Express $f(x)$ as a polynomial $g\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ where $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are the elementary symmetric functions

$$
\sigma_{1}=x+y+z, \quad \sigma_{2}=x y+x z+y z, \quad \sigma_{3}=x y z .
$$

Problem:
[4] Prove the primitive element theorem: Let K be a finite extension of a field F of characteristic zero. There is an element $\gamma \in K$ such that $K=F(\gamma)$.

Problem:
[5] Prove the following theorem about Kummer extensions: Let F be a subfield of \mathbb{C} which contains the p th root of unity ζ for a prime p, and let K / F be a Galois extension of degree p. Then K is obtained by adjoining a p th root to F.

Problem:

Recall that the discriminant of $f(x)=x^{3}+p x+q$ is $D=-4 p^{3}-27 q^{2}$.
[6] Let $f(x)=x^{3}+2$.
(a) What is the degree of the splitting field K of f over \mathbb{Q} ?
(b) What is the Galois group $G=G(K / \mathbb{Q})$ of f ?
(c) List the subfields L of K, and the corresponding subgroups $H=G(K / L)$ of G.

Problem:
[7] Let $f(x)=x^{3}+x-2$.
(a) What is the degree of the splitting field K of f over \mathbb{Q} ?
(b) What is the Galois group $G=G(K / \mathbb{Q})$ of f ?
(c) List the subfields L of K, and the corresponding subgroups $H=G(K / L)$ of G.

Problem:
[8] Let $f(x)=x^{5}-1$.
(a) What is the degree of the splitting field K of f over \mathbb{Q} ?
(b) What is the Galois group $G=G(K / \mathbb{Q})$ of f ?
(c) List the subfields L of K, and the corresponding subgroups $H=G(K / L)$ of G.

Problem:

