Final Exam

Modern Algebra, Dave Bayer, May 12, 1999

Name: _____

ID: _____ School: _____

[1] (5 pts)	[2] (5 pts)	[3] (5 pts)	[4] (5 pts)	
[5] (5 pts)	[6] (5 pts)	[7] (5 pts)	[8] (5 pts)	TOTAL

Please work only one problem per page, and label all continuations in the spaces provided. Extra pages are available. Check your work, where possible.

[1] Let $\mathbf{X} = \{a_1, \ldots, a_n\} \subset \mathbb{C}$ be a finite set of points, where \mathbb{C} is the complex numbers. Define $I \subset \mathbb{C}[x]$ to be the set of all polynomials f(x) that vanish on every point of **X**. That is,

 $I = \{ f(x) \in \mathbb{C}[x] \mid f(a_i) = 0 \text{ for every point } a_i \in \mathbf{X} \}.$

- (a) Prove that I is an ideal.
- (b) Give a set of generators for *I*.

[2] What is the minimal polynomial of $\alpha = \sqrt{3} + \sqrt{5}$ over \mathbb{Q} ?

[3] Let $f(x, y, z) = x^3yz + xy^3z + xyz^3$. Express f(x) as a polynomial $g(\sigma_1, \sigma_2, \sigma_3)$ where $\sigma_1, \sigma_2, \sigma_3$ are the elementary symmetric functions

$$\sigma_1 = x + y + z, \quad \sigma_2 = xy + xz + yz, \quad \sigma_3 = xyz.$$

[4] Prove the primitive element theorem: Let K be a finite extension of a field F of characteristic zero. There is an element $\gamma \in K$ such that $K = F(\gamma)$.

[5] Prove the following theorem about Kummer extensions: Let F be a subfield of \mathbb{C} which contains the pth root of unity ζ for a prime p, and let K/F be a Galois extension of degree p. Then K is obtained by adjoining a pth root to F.

Recall that the discriminant of $f(x) = x^3 + px + q$ is $D = -4p^3 - 27q^2$.

- [6] Let $f(x) = x^3 + 2$.
- (a) What is the degree of the splitting field K of f over \mathbb{Q} ?
- (b) What is the Galois group $G = G(K/\mathbb{Q})$ of f?
- (c) List the subfields L of K, and the corresponding subgroups H = G(K/L) of G.

[7] Let $f(x) = x^3 + x - 2$.

- (a) What is the degree of the splitting field K of f over \mathbb{Q} ?
- (b) What is the Galois group $G = G(K/\mathbb{Q})$ of f?
- (c) List the subfields L of K, and the corresponding subgroups H = G(K/L) of G.

[8] Let $f(x) = x^5 - 1$.

- (a) What is the degree of the splitting field K of f over \mathbb{Q} ?
- (b) What is the Galois group $G = G(K/\mathbb{Q})$ of f?
- (c) List the subfields L of K, and the corresponding subgroups H = G(K/L) of G.