Practice problems for second midterm

midterm to be held Wednesday, April 8, in class Dave Bayer, Modern Algebra

We will have a problem session in preparation for this midterm:

• Monday, April 6, 8:00pm - 10:00pm, 507 Mathematics

[1] Prove the Eisenstein criterion for irreducibility: Let $f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$, and let p be a prime. If p doesn't divide a_n , p does divide a_{n-1}, \dots, a_0 , but p^2 doesn't divide a_0 , then f(x) is irreducible as a polynomial in $\mathbb{Q}[x]$.

- (a) First, what does f(x) look like mod p?
- (b) Now, suppose that there is a nontrivial factorization f(x) = g(x)h(x) in $\mathbb{Z}[x]$. What do g(x) and h(x) look like mod p? What would this imply about a_0 ?
- [2] Prove that $f(x) = x^{p-1} + \ldots + x + 1$ is irreducible when p is prime:
- (a) Show that $(x-1)f(x) = x^p 1$.
- (b) Now set x = y + 1, so $(x 1)f(x) = yf(y + 1) = (y + 1)^p 1$. Study the binomial coefficients in the expansion of $(y + 1)^p$, and apply the Eisenstein criterion to f(y + 1).

[3] Let p be a prime so p-1 is not a power of 2. Prove that the p-gon is not constructible:

- (a) Let $\theta = 2\pi/p$, and let $z = \cos \theta + i \sin \theta$. Explain why, if $\cos \theta$ and $\sin \theta$ are constructible, then the degree of z over \mathbb{Q} is a power of 2.
- (b) Show that z is a root of $x^p 1$ but not x 1, so z is a root of the irreducible polynomial $f(x) = x^{p-1} + \ldots + x + 1$. Thus, the degree of z over \mathbb{Q} is not a power of 2.
- [4] Show that the set of constuctible numbers form a field.
- [5] Prove that the cube root of 5 is not a constructible number.
- [6] Show algebraically that it is possible to construct an angle of 30° .

[7] Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 8 & 8 & 8 \end{bmatrix}$. Reduce A to diagonal form, using row and column operations.

[8] Let G be the Abelian group $G = \langle a, b, c | a^2b^2c^2 = a^2b^2 = a^2c^2 = 1 \rangle$. Express G as a product of free and cyclic groups.

[9] Let $R = k[x_1, \ldots, x_n]$ be the polynomial ring in x_1, \ldots, x_n over a field k, and let f_1, \ldots, f_m be m polynomials in R. Let R^m be the free R-module $R^m = \{ (g_1, \ldots, g_m) \mid g_i \in R \text{ for } 1 \leq i \leq m \}$. Let $M \subset R^m$ be the subset of syzygies $M = \{ (g_1, \ldots, g_m) \mid g_1 f_1 + \ldots + g_m f_m = 0 \}$.

- (a) Show that M is an R-module.
- (b) Let $R = \mathbb{Q}[x, y]$, m = 3, and $f_1 = x^2$, $f_2 = xy$, $f_3 = y^2$. Find a set of generators for $M \subset R^3$.

[10] Suppose that the complex number α belongs to an extension K of \mathbb{Q} of degree 9, and an extension L of \mathbb{Q} of degree 12, but not to \mathbb{Q} itself. What is the degree of α over \mathbb{Q} ?

[11] Show that every element of \mathbb{F}_{25} is a root of the polynomial $x^{25} - x$.

[12] Give a presentation of \mathbb{F}_9 of the form $\mathbb{F}_3[x]/(f(x))$. In terms of this presentation, find a generator α of the multiplicative group \mathbb{F}_9^* , i.e. an element of multiplicative order 9 - 1 = 8.