Practice problems for second midterm

midterm to be held Wednesday, April 8, in class

Dave Bayer, Modern Algebra
We will have a problem session in preparation for this midterm:

- Monday, April 6, 8:00pm - 10:00pm, 507 Mathematics
[1] Prove the Eisenstein criterion for irreducibility: Let $f(x)=a_{n} x^{n}+$ $\ldots+a_{1} x+a_{0} \in \mathbb{Z}[x]$, and let p be a prime. If p doesn't divide a_{n}, p does divide a_{n-1}, \ldots, a_{0}, but p^{2} doesn't divide a_{0}, then $f(x)$ is irreducible as a polynomial in $\mathbb{Q}[x]$.
(a) First, what does $f(x)$ look like $\bmod p$?
(b) Now, suppose that there is a nontrivial factorization $f(x)=g(x) h(x)$ in $\mathbb{Z}[x]$. What do $g(x)$ and $h(x)$ look like $\bmod p$? What would this imply about a_{0} ?
[2] Prove that $f(x)=x^{p-1}+\ldots+x+1$ is irreducible when p is prime:
(a) Show that $(x-1) f(x)=x^{p}-1$.
(b) Now set $x=y+1$, so $(x-1) f(x)=y f(y+1)=(y+1)^{p}-1$. Study the binomial coefficients in the expansion of $(y+1)^{p}$, and apply the Eisenstein criterion to $f(y+1)$.
[3] Let p be a prime so $p-1$ is not a power of 2 . Prove that the p-gon is not constructible:
(a) Let $\theta=2 \pi / p$, and let $z=\cos \theta+i \sin \theta$. Explain why, if $\cos \theta$ and $\sin \theta$ are constructible, then the degree of z over \mathbb{Q} is a power of 2 .
(b) Show that z is a root of $x^{p}-1$ but not $x-1$, so z is a root of the irreducible polynomial $f(x)=x^{p-1}+\ldots+x+1$. Thus, the degree of z over \mathbb{Q} is not a power of 2 .
[4] Show that the set of constuctible numbers form a field.
[5] Prove that the cube root of 5 is not a constructible number.
[6] Show algebraically that it is possible to construct an angle of 30°.
[7] Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 8 & 8 & 8\end{array}\right]$. Reduce A to diagonal form, using row and column operations.
[8] Let G be the Abelian group $G=\left\langle a, b, c \mid a^{2} b^{2} c^{2}=a^{2} b^{2}=a^{2} c^{2}=1\right\rangle$. Express G as a product of free and cyclic groups.
[9] Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in x_{1}, \ldots, x_{n} over a field k, and let f_{1}, \ldots, f_{m} be m polynomials in R. Let R^{m} be the free R-module $R^{m}=\left\{\left(g_{1}, \ldots, g_{m}\right) \mid g_{i} \in R\right.$ for $\left.1 \leq i \leq m\right\}$. Let $M \subset R^{m}$ be the subset of syzygies $M=\left\{\left(g_{1}, \ldots, g_{m}\right) \mid g_{1} f_{1}+\ldots+g_{m} f_{m}=0\right\}$.
(a) Show that M is an R-module.
(b) Let $R=\mathbb{Q}[x, y], m=3$, and $f_{1}=x^{2}, f_{2}=x y, f_{3}=y^{2}$. Find a set of generators for $M \subset R^{3}$.
[10] Suppose that the complex number α belongs to an extension K of \mathbb{Q} of degree 9 , and an extension L of \mathbb{Q} of degree 12 , but not to \mathbb{Q} itself. What is the degree of α over \mathbb{Q} ?
[11] Show that every element of \mathbb{F}_{25} is a root of the polynomial $x^{25}-x$.
[12] Give a presentation of \mathbb{F}_{9} of the form $\mathbb{F}_{3}[x] /(f(x))$. In terms of this presentation, find a generator α of the multiplicative group \mathbb{F}_{9}^{*}, i.e. an element of multiplicative order $9-1=8$.

