Practice problems for final exam

Final to be held Wednesday, May 13, 1:10pm - 4:00pm

We will have a problem session in preparation for this final:

- Monday, May 11, 8:00pm - 10:00pm, 507 Mathematics
[1] Let $f(x, y, z)=x^{2} y+x^{2} z+x y^{2}+y^{2} z+x z^{2}+y z^{2}$. Express $f(x)$ as a polynomial $g\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ where $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are the elementary symmetric functions

$$
\sigma_{1}=x+y+z, \quad \sigma_{2}=x y+x z+y z, \quad \sigma_{3}=x y z
$$

[2] Let $f(x)=x^{2}+a x+b$ have roots α_{1} and α_{2}, where

$$
\alpha_{1}+\alpha_{2}=c, \quad \alpha_{1}^{2}+\alpha_{2}^{2}=d
$$

Express a and b in terms of c and d.
Recall that the discriminant of $f(x)=x^{2}+b x+c$ is $D=b^{2}-4 c$, and that the discriminant of $f(x)=x^{3}+p x+q$ is $D=-4 p^{3}-27 q^{2}$.
[3] Let $f(x)=x^{3}-2$.
(a) What is the degree of the splitting field K of f over \mathbb{Q} ?
(b) What is the Galois group $G=G(K / \mathbb{Q})$ of f ?
(c) List the subfields L of K, and the corresponding subgroups $H=G(K / L)$ of G.
[4] Repeat [3] for $f(x)=x^{3}-3 x+1$.
[5] Repeat [3] for $f(x)=x^{4}-3 x^{2}+2$.
[6] Repeat [3] for $f(x)=x^{4}-5 x^{2}+6$.
[7] Prove the primitive element theorem (14.4.1, p. 552): Let K be a finite extension of a field F of characteristic zero. There is an element $\gamma \in K$ such that $K=F(\gamma)$.
[8] Prove the following theorem about Kummer extensions (14.7.4, p. 566): Let F be a subfield of \mathbf{C} which contains the p th root of unity ζ for a prime p, and let K / F be a Galois extension of degree p. Then K is obtained by adjoining a p th root to F.

