Second midterm

Dave Bayer, Modern Algebra, April 8, 1998

[1] Prove the Eisenstein criterion for irreducibility: Let $f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$, and let p be a prime. If p doesn't divide a_n , p does divide a_{n-1}, \dots, a_0 , but p^2 doesn't divide a_0 , then f(x) is irreducible as a polynomial in $\mathbb{Q}[x]$.

[2] Show that the following polynomials in Z[x] cannot be factored:
(a) x³ + 6x² + 9x + 12
(b) x² + x + 6

[3] Decide, with proof, whether or not each of the following angles can be constructed.

(a) $\theta = 2\pi/6$ (b) $\theta = 2\pi/7$ (c) $\theta = 2\pi/8$

[4] Let G be the Abelian group $G = \langle a, b, c | b^2 c^2 = a^6 b^2 c^2 = a^6 b^4 c^4 = 1 \rangle$. Express G as a product of free and cyclic groups.

[5] Give a presentation of the finite field with eight elements \mathbb{F}_8 , of the form $\mathbb{F}_2[x]/(f(x))$. In terms of this presentation, find a generator α of the multiplicative group \mathbb{F}_8^* .