Second midterm

Dave Bayer, Modern Algebra, April 8, 1998
[1] Prove the Eisenstein criterion for irreducibility: Let $f(x)=a_{n} x^{n}+$ $\ldots+a_{1} x+a_{0} \in \mathbb{Z}[x]$, and let p be a prime. If p doesn't divide a_{n}, p does divide a_{n-1}, \ldots, a_{0}, but p^{2} doesn't divide a_{0}, then $f(x)$ is irreducible as a polynomial in $\mathbb{Q}[x]$.
[2] Show that the following polynomials in $\mathbb{Z}[x]$ cannot be factored:
(a) $x^{3}+6 x^{2}+9 x+12$
(b) $x^{2}+x+6$
[3] Decide, with proof, whether or not each of the following angles can be constructed.
(a) $\theta=2 \pi / 6$
(b) $\theta=2 \pi / 7$
(c) $\theta=2 \pi / 8$
[4] Let G be the Abelian group $G=\left\langle a, b, c \mid b^{2} c^{2}=a^{6} b^{2} c^{2}=a^{6} b^{4} c^{4}=1\right\rangle$. Express G as a product of free and cyclic groups.
[5] Give a presentation of the finite field with eight elements \mathbb{F}_{8}, of the form $\mathbb{F}_{2}[x] /(f(x))$. In terms of this presentation, find a generator α of the multiplicative group \mathbb{F}_{8}^{*}.

