First midterm

Dave Bayer, Modern Algebra, February 25, 1998
All rings are commutative with identity, as in our text. Recall that an integral domain R is a nonzero ring having no zero divisors. In other words, if $a b=0$ then $a=0$ or $b=0$.
[1] Consider the ideal $I=\left(2, x^{3}+x\right) \subset \mathbb{Z}[x]$.
(a) Describe the ideal I in words, listing enough elements of I to make the pattern clear. How would you tell at a glance if a given polynomial $f(x) \in \mathbb{Z}[x]$ belongs to I ?
(b) List representatives for the elements of the quotient ring $R=\mathbb{Z}[x] / I$, and describe the multiplication rule in R for these representatives.
(c) Is R an integral domain?
[2] Let $a=3-i$ and $b=2 i$ be elements of the Gaussian integers $\mathbb{Z}[i]$.
(a) Find $q_{1}, c \in \mathbb{Z}[i]$ so $a=q_{1} b+c$ with $|c|<|b|$.
(b) Now find $q_{2}, d \in \mathbb{Z}[i]$ so $b=q_{2} c+d$ with $|d|<|c|$.
(c) Express $(a, b) \subset \mathbb{Z}[i]$ as a principal ideal.
[3] Prove that the following two statements are equivalent, for a nonzero ring R and elements $a, b, c \in R$:
(a) R is an integral domain.
(b) We can cancel in R : If $a b=a c$ for $a \neq 0$, then $b=c$.
[4] Prove that if an integral domain R has only finitely many elements, then R is a field.
[5] Let \mathbb{F}_{5} be the finite field with 5 elements. Find a polynomial $f(x)$ in the polynomial ring $\mathbb{F}_{5}[x]$ such that the quotient ring $\mathbb{F}_{5}[x] /(f(x))$ is a field with 25 elements.

