First midterm

Dave Bayer, Modern Algebra, February 25, 1998

All rings are commutative with identity, as in our text. Recall that an *integral* domain R is a nonzero ring having no zero divisors. In other words, if ab = 0 then a = 0 or b = 0.

- [1] Consider the ideal $I = (2, x^3 + x) \subset \mathbb{Z}[x]$.
- (a) Describe the ideal I in words, listing enough elements of I to make the pattern clear. How would you tell at a glance if a given polynomial $f(x) \in \mathbb{Z}[x]$ belongs to I?
- (b) List representatives for the elements of the quotient ring $R = \mathbb{Z}[x]/I$, and describe the multiplication rule in R for these representatives.
- (c) Is R an integral domain?
- [2] Let a = 3 i and b = 2i be elements of the Gaussian integers $\mathbb{Z}[i]$.
- (a) Find $q_1, c \in \mathbb{Z}[i]$ so $a = q_1 b + c$ with |c| < |b|.
- (b) Now find $q_2, d \in \mathbb{Z}[i]$ so $b = q_2 c + d$ with |d| < |c|.
- (c) Express $(a, b) \subset \mathbb{Z}[i]$ as a principal ideal.

[3] Prove that the following two statements are equivalent, for a nonzero ring R and elements $a, b, c \in R$:

- (a) R is an integral domain.
- (b) We can *cancel* in R: If ab = ac for $a \neq 0$, then b = c.

[4] Prove that if an integral domain R has only finitely many elements, then R is a field.

[5] Let \mathbb{F}_5 be the finite field with 5 elements. Find a polynomial f(x) in the polynomial ring $\mathbb{F}_5[x]$ such that the quotient ring $\mathbb{F}_5[x]/(f(x))$ is a field with 25 elements.