Final Examination

Dave Bayer, Modern Algebra, May 13, 1998

[1] Which of the following rings are integral domains? Explain your reasoning.

- (a) $\mathbb{F}_2[x]/(x^4+x^2+1)$
- **(b)** $\mathbb{Q}[x]/(x^4+2x^2+2)$
- [2] Consider the ideal $I = (2, 3x^2) \subset \mathbb{Z}[x]$, and let $R = \mathbb{Z}[x]/I$.
- (a) Does $f(x) = 7x^4 + 5x^3 + 3x^2 + 2x$ belong to *I*?
- (b) How many elements are there in R?
- (c) List representatives for the elements of R, and describe the multiplication rule in R for these representatives.

[3] Let R be a principal ideal domain, and let

 $I_1 \quad \subset \quad I_2 \quad \subset \quad I_3 \quad \subset \quad \cdots \quad \subset \quad I_n \quad \subset \quad \cdots$

be an infinite ascending chain of ideals in R. Show that this chain *stabilizes*, i.e.

$$I_N = I_{N+1} = I_{N+2} = \cdots$$

for some N.

- [4] Working in the Gaussian integers $\mathbb{Z}[i]$, factor 2 into primes.
- [5]
- (a) Give a presentation of the finite field with 27 elements \mathbb{F}_{27} , of the form $\mathbb{F}_3[x]/(f(x))$.
- (b) In terms of this presentation, guess a generator α of the multiplicative group \mathbb{F}_{27}^* . Compute the odds that such a guess is correct. Explain your reasoning.
- [6] Prove that $\alpha = e^{2\pi i/11} + 3$ is not constructible.
- [7] What is the minimal polynomial of $\alpha = \sqrt{2} + \sqrt{3}$ over \mathbb{Q} ?

[8] Let $f(x, y, z) = x^3 + y^3 + z^3$. Express f(x) as a polynomial $g(\sigma_1, \sigma_2, \sigma_3)$ where $\sigma_1, \sigma_2, \sigma_3$ are the elementary symmetric functions

$$\sigma_1 = x + y + z, \quad \sigma_2 = xy + xz + yz, \quad \sigma_3 = xyz.$$

Recall that the discriminant of $f(x) = x^2 + bx + c$ is $D = b^2 - 4c$, and that the discriminant of $f(x) = x^3 + px + q$ is $D = -4p^3 - 27q^2$.

- [9] Let $f(x) = x^3 12$.
- (a) What is the degree of the splitting field K of f over \mathbb{Q} ?
- (b) What is the Galois group $G = G(K/\mathbb{Q})$ of f?
- (c) List the subfields L of K, and the corresponding subgroups H = G(K/L) of G.

[10] Prove the primitive element theorem (14.4.1, p. 552): Let K be a finite extension of a field F of characteristic zero. There is an element $\gamma \in K$ such that $K = F(\gamma)$.