Exam 01

Name \qquad Uni \qquad
[1] Up to rotational symmetry, how many nine bead necklaces have three red beads and six blue beads?

Exam 01

[2] Up to symmetry (rotations and flips), how many ways can the squares of a 4 by 4 checkerboard be colored using n colors?

Exam 01

[3] Up to rotational symmetry, how many ways can the eight corners of a cube be colored using n colors?

Exam 01

[4] Give a proof of Burnside's Lemma: If a group G acts on a set of patterns X, then the number of distinct patterns up to symmetry is equal to the average number of patterns fixed by an element of the group:

$$
\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|
$$

Exam 01

[5] Up to symmetry (rotations and flips), how many ways can one mark six out of the 24 triangles of the following figure?

