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Partial class notes, draft of Tuesday th April, , :am.

1.1 �e Alternating Groups

Let An be the alternating group of even permutations of {1, . . . , n} . In this
section we prove that An is simple for n > 5. The crux of the argument is
finding a fixed point.

Lemma .. Let g ∈ Sn be an even permutation. If g commutes with an odd
permutation, then all permutations with the same cycle shape as g are conjugate
in An.

Proof. We know that all permutations with the same cycle shape as g are con-
jugate in Sn. Let k be an odd permutation that commutes with g. For any odd
permutation h, the product hk is an even permutation, and we have

(hk)g(hk)−1 = hkgk−1h−1 = hgkk−1h−1 = hgh−1

so any conjugate of g by an odd permutation is also a conjugate of g by an
even permutation. Therefore, the permutations with the same cycle shape as g
remain conjugate in An.

For example, (1 2) commutes with (1 2)(3 4) and (3 4 5), so all products of
two disjoint 2-cycles are conjugate in A4, and all 3-cycles are conjugate in A5.
However, in A4 no odd permutation commutes with (1 2 3), and the 3-cycles
break up into two conjugacy classes. In A5 no odd permutation commutes with
(1 2 3 4 5), and the 5-cycles break up into two conjugacy classes.

Lemma .. Any even permutation can be written as a product of 3-cycles.


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Proof. Write an even permutation as a product of 2-cycles. Consider the first
pair of 2-cycles (i j)(k `) in this product. If j = k then (i j)(k `) = (i ` j) is a
3-cycle. Otherwise,

(i j)(k `) = (i j)(j k) (j k)(k `) = (i k j)(j ` k)

is a product of two 3-cycles. Continuing with the remaining pairs, we express
the even permutation as a product of 3-cycles.

For example, (1 2 3 4)(5 6 7 8) is an even permutation. We can write

(1 2 3 4)(5 6 7 8) = (1 2)(1 3)(1 4) (5 6)(5 7)(5 8)
= (1 2)(1 3) (1 4)(4 5) (4 5)(5 6) (5 7)(5 8)
= (1 2 3)(1 5 4)(4 6 5)(5 7 8)

Corollary .. LetN be a normal subgroup ofAn for n > 5. If N contains either
a 3-cycle or a product of two disjoint 2-cycles, thenN = An.

Proof. Suppose that after relabeling,N contains the permutation (1 2 3). Because
(4 5) commutes with (1 2 3), by Lemma . all 3-cycles are conjugate in An, so
they are all contained inN. By Lemma ., every element of An is a product of
3-cycles, soN = An.

Now suppose that after relabeling, N contains the permutation (1 2)(3 4).
Because (1 2) commutes with (1 2)(3 4), by Lemma . all products of two
disjoint 2-cycles are conjugate inAn, so they are all contained inN. In particular,
N contains (1 2)(3 5). The product

(1 2)(3 4) (1 2)(3 5) = (3 4 5)

is a 3-cycle, so againN = An.

Lemma .. LetN be a normal subgroup ofAn for n > 5. If N is not the identity
subgroup, thenN contains a nontrivial permutation that fixes some element of
{1, . . . , n} .

Proof. Let h ∈ N be a nontrivial permutation. If h has a fixed point, then we
are done. Otherwise, write h as a product of disjoint cycles; if these cycles are
of different lengths, then some power of h is a nontrivial permutation inN with
a fixed point, and we are done.

Otherwise, h is a disjoint product of equal length cycles. BecauseN is closed
under taking products, taking inverses, and conjugating by elements of An, we
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have hgh−1g−1 ∈ N for any g ∈ An. We show that for some choice of g, this
product is a nontrivial permutation with a fixed point.

We consider each cycle length. Suppose that after relabeling,h = (1 2)(3 4) k,
where k fixes the set {1, . . . , 4} . In this case, we can choose g = (1 2 3), which
commutes with k:

(1 2)(3 4) k (1 2 3) k−1 (3 4)(1 2) (1 3 2) = (1 4)(2 3)

is a nontrivial permutation that fixes 5.
Suppose that after relabeling, h = (1 2 3)(4 5 6) k, where k fixes the set

{1, . . . , 6} . In this case, we can choose g = (1 4)(2 5), which commutes with k:

(1 2 3)(4 5 6) k (1 4)(2 5) k−1 (4 6 5)(1 3 2) (2 5)(1 4) = (2 5)(3 6)

is a nontrivial permutation that fixes 1.
For the general case, suppose that after relabeling, h = (1 2 3 . . . m) k, where

m > 4, and k fixes the set {1, . . . , m} . In this case, we can choose g = (1 2 3),
which commutes with k:

(1 2 3 . . . m) k (1 2 3) k−1 (1m . . . 3 2) (1 3 2) = (2m 3)

is a nontrivial permutation that fixes 1.

The expression hgh−1g−1 is called a commutator; it measures the failure of
g and h to commute. Commutators are a frequent object of study in algebra;
one can for example construct the subgroup of all commutators of a group.

A different proof of this lemma uses the pigeonhole principle: If the non-
identity elements of a subgroup H < Sn have no fixed points, then |H| 6 n. For
if g and h are distinction permutations of H, then they cannot agree on any
element of {1, . . . , n} , or else gh−1 will be a nontrivial permutation inH having
that element as a fixed point.

The Klein four-group

K = { (), (1 2)(3 4), (1 3)(2 4), (1 4)(2 4) }

is a normal subgroup of A4, and its nonidentity elements have no fixed points.
However, for n > 5 one can show that each nonidentity conjugacy class in An

is of order > n. Since a normal subgroup consists of entire conjugacy classes,
establishing this bound gives an alternate proof of Lemma ..

Theorem .. �e alternating group An is simple for n > 5.
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Proof. LetN be a normal subgroup of An other than the identity subgroup. We
want to show thatN = An.

By Lemma .,N contains a nontrivial permutation h with a fixed point. If
n = 5, then hmust either be 3-cycle or a product of two disjoint 2-cycles. By
Corollary . we haveN = A5. This shows that A5 is simple.

Otherwise, suppose that after relabeling, h fixes n. Let An−1 < An be the
alternating group of even permutations of {1, . . . , n−1} , and letH = N∩An−1.
Thenh ∈ H, soH is not the identity subgroup.Moreover,H is a normal subgroup
of An−1. By induction, An−1 is simple, so H = An−1. In particular,N contains
the 3-cycle (1 2 3), so again by Corollary . we haveN = An. This shows that
An is simple.

1.2 �e Sylow�eorems

Lemma .. Let f : G→ L be a homomorphism between two finite groups with
kernelN�G, and letH < G be a subgroup. If the orders |H| and |L| are relatively
prime, then H ⊆ N.

Proof. Consider the order of the image f(H) < L. Because f(H) is a subgroup of
L, its order divides the order of L. On the other hand, because f(H) is a quotient
ofH, its order divides the order ofH. Because the orders |H| and |L| are relatively
prime, we conclude that |f(H)| = 1. In other words, f sends every element of H
to the identity element of L, soH is contained in the kernelN of the map f.

More generally, we can write the order of H as the product

|H| = |H ∩N| · |f(H)|

with the restrictions that |H ∩N| divides |N|, and |f(H)| divides |H|.
A version of this formula is familiar from linear algebra: If f : V → W is a

linear map of vector spaces with kernelN, and U ⊂ V is a subspace, then

dimU = dim (U ∩N) + dim f(U)

with the restrictions that dim (U ∩N) 6 dimN and dim f(U) 6 dimW.
These two formulas look similar; how can we reconcile them? When H is

an n-dimensional vector space over the finite field Fp, both formulas apply: As
a vector space, dimH = n, while as an additive group, H is isomorphic to the
direct product Cp × · · · × Cp of n copies of the cyclic group of order p, and
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|H| = pn. Here, multiplying orders has the same effect as adding dimensions,
and the two formulas agree. We think of the first formula as conservation of
order, and the second formula as conservation of dimension.

Corollary .. Let G be a group of order mn, where m and n are relatively
prime. If H andN are subgroups of orderm, andN is normal in G, thenH = N.

Proof. We apply Lemma ., taking L = G/N: Consider the quotient map
G → G/N, with kernel N. The quotient G/N has order n, which is relatively
prime to the orderm of H. By Lemma ., H ⊆ N. Because H andN have the
same order, they are equal.

A refinement of Corollary . will be used in one proof of the Sylow theorems:

Corollary .. LetG be a group of ordermn, wherem andn are relatively prime.
If H and K are subgroups of orderm, andH is contained in the normalizerN(K)

of K, then H = K.

Proof. We apply Corollary . to the subgroup N(K): We have the chain of
subgroups K < N(K) < G, so the order |N(K)| divides the order |G| = mn, and
is a multiplemn ′ of the order |K| = m. Therefore n ′ divides n. ThusN(K) is a
group of ordermn ′, wherem andn ′ are relatively prime.H andK are subgroups
ofN(K) of orderm, and K is normal inN(K), so Corollary . applies.

Example .. Let K < Sn be a subgroup of the symmetric group, of odd order.
Then K consists entirely of even permutations.

Proof. Consider the homomorphism Sn → C2 taking each permutation to its
sign, an element of the multiplicative group {1,−1}. The kernel of this map is
the alternating group An of even permutations. Because |K| is relatively prime
to 2, by Lemma . we have K ⊆ An.

Example .. The Klein-4 subgroup

K = { (), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3) } < A4.

is the unique order 4 subgroup of A4.

We know this to be true by listing the elements of A4; every other element
has order 3. Once we establish that K is normal in A4, this also follows from
the Sylow theorems: 4 is the maximal power of 2 dividing the order 12 of A4,
so all subgroups of order 4 in A4 are conjugate. However, it is simpler to apply
Corollary .:
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Proof. K is normal in A4, because conjugation of permutations preserves shape,
and K consists of the identity and all elements of A4 having the same shape as
(1 2)(3 4). Because |K| = 4 and |A4| = 4 · 3 with 4 and 3 relatively prime, by
Corollary . any subgroup H < A4 of order 4 is equal to K.

The next example illustrates how Corollary . will be applied in a proof of
the Sylow theorems:

Example .. Consider the subgroup

K = { (), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3) } < A5.

Let H < A5 be a subgroup of order 4, which fixes K under conjugation. Then
H = K.

Proof. Our hypothesis states that for any h ∈ H we have hKh−1 = K. In other
words,H is contained in the normalizerN(K) of K. The order |A5| = 4 · 15 with
4 and 15 relatively prime, so by Corollary . we have H = K.

We will prove the second and third Sylow theorems by considering how a
p-Sylow subgroup P < G acts by conjugation on the set X of all conjugates of a
p-Sylow subgroupQ < G. First, we explore this construction in examples:

Example .. Consider the 2-Sylow subgroups

P = {(), (1 2)}, Q = {(), (1 3)}, R = {(), (2 3)}

of the symmetric group S3. Let X = {P,Q,R} be the set of conjugates of Q.
Then P acts on X by conjugation, and under this action X consists of the orbits
{P} and {Q,R} .


