Practice Final Exam

Modern Algebra I, Dave Bayer, April 26, 2010
The following problems are representative of topics and problems that may appear on our final exam.
[1] Let A_{5} be the alternating group of even permutations on five elements. Define a simple group. Prove that A_{5} is simple.
(You may assume that A_{5} is isomorphic to the icosahedral group I of rotational symmetries of a dodecahedron, if you prefer working with that group.)
[2] (Sylow 1) Let G be a group of order n, and let p be a prime number such that p^{e} divides n. Prove that there exists a subgroup $\mathrm{P}<\mathrm{G}$ of order p^{e}.
[3] (Sylow 2) Let G be a group of order $p^{e} m$, where p be a prime number relatively prime to m. Prove that any two subgroups $\mathrm{P}, \mathrm{Q}<\mathrm{G}$ of order p^{e} are conjugate.
[4] (Sylow 3) Let G be a group of order $p^{e} m$, where p be a prime number relatively prime to m. Prove that the number of subgroups $\mathrm{P}<\mathrm{G}$ of order p^{e} is congruent to $1 \bmod p$.
[5] Show that the only group of order 77 is cyclic.
[6] There are two groups of order 381. Describe them.
[7] There are four groups of order 316. Describe them.
[8] There are five groups of order 98. Describe them.
[9] Describe the p-Sylow subgroups of the symmetric group S_{4}, for each prime p dividing $\left|S_{4}\right|$.
[10] Describe the p-Sylow subgroups of the alternating group A_{5}, for each prime p dividing $\left|A_{5}\right|$.
[11] Describe the p-Sylow subgroups of the dihedral group D_{9}, for each prime p dividing $\left|D_{9}\right|$.
[12] Describe the p-Sylow subgroups of the dihedral group D_{10}, for each prime p dividing $\left|D_{10}\right|$.

