Practice Final Exam

Modern Algebra I, Dave Bayer, April 26, 2010

The following problems are representative of topics and problems that may appear on our final exam.

[1] Let A_5 be the alternating group of even permutations on five elements. Define a *simple* group. Prove that A_5 is simple.

(You may assume that A_5 is isomorphic to the icosahedral group I of rotational symmetries of a dodecahedron, if you prefer working with that group.)

[2] (Sylow 1) Let G be a group of order n, and let p be a prime number such that p^e divides n. Prove that there exists a subgroup P < G of order p^e .

[3] (Sylow 2) Let G be a group of order $p^e m$, where p be a prime number relatively prime to m. Prove that any two subgroups P, Q < G of order p^e are conjugate.

[4] (Sylow 3) Let G be a group of order p^em , where p be a prime number relatively prime to m. Prove that the number of subgroups P < G of order p^e is congruent to 1 mod p.

[5] Show that the only group of order 77 is cyclic.

[6] There are two groups of order 381. Describe them.

[7] There are four groups of order 316. Describe them.

[8] There are five groups of order 98. Describe them.

[9] Describe the p-Sylow subgroups of the symmetric group S_4 , for each prime p dividing $|S_4|$.

[10] Describe the p-Sylow subgroups of the alternating group A_5 , for each prime p dividing $|A_5|$.

[11] Describe the p-Sylow subgroups of the dihedral group D_9 , for each prime p dividing $|D_9|$.

[12] Describe the p-Sylow subgroups of the dihedral group D_{10} , for each prime p dividing $|D_{10}|$.