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We claim p divides |X|. In forming a p-tuple in X, we may let g1, g2, - - -, gp—1 be any
elements of G, and g, is then uniquely determined as (g;8> - g,—1)~". Thus |X| =
|G [P~ and since p divides |G|, we see that p divides | X|.

Let o be the cycle (1,2,3,:-+, p)in §,. We let o act on X by

0(81, 82+ 8p) = (8o(1), o2)s ***» Bop) = (82, 83" &p 81)-

Note that (g2, g3, -, &p, 81) € X, for g1(g283 - - gp) = e implies that g, = (g283 -
gp)‘l, 80 (g283 -+ - gp)€1 = e also. Thus o acts on X, and we consider the subgroup (o)
of S, to act on X by iteration in the natural way.

Now |(o'}| = p, so we may apply Theorem 36.1, and we know that |X| = |X )|
(mod p). Since p divides | X|, it must be that p divides | X 4| also. Let us examine X ).
Now (g1, 82, -+, §p) is left fixed by o, and hence by (o), ifandonlyif g = g = -+ =
gp. We know at least one element in X 4, namely (e, e, - - -, ). Since p divides | X3/,
there must be at least p elements in X . Hence there exists some elementa € G,a # ¢,
such that (a,a, - - -, a) € X, and hence a” = e, so a has order p. Of course, (a) is a
subgroup of G of order p. L 4

Let G be a finite group. Then G is a p-group if and only if |G| is a power of p.
We leave the proof of this corollary to Exercise 14. *

The Sylow Theorems

Let G be a group, and let .%” be the collection of all subgroups of G. We make .¥” into
a G-set by letting G act on.%° by conjugation. Thatis,if H € .¥so H < Gand g € G,
then g acting on H yields the conjugate subgroup g Hg ™. (To avoid confusion, we will
never write this action as g H.) Now Gy = {g € G| gHg™! = H} is easily seen to be a
subgroup of G (Exercise 11), and H is a normal subgroup of G g. Since G y consists of
all elements of G that leave H invariant under conjugation, G y is the largest subgroup
of G having H as a normal subgroup.

The subgroup G y just discussed is the normalizer of H in G and will be denoted N[H]
from now on. g g [ ]

In the proof of the lemma that follows, we will use the fact that if H is a finite
subgroup of a group G, then g € N[H]if ghg~' € H forall h € H.To see this, note that
if ghyg~! = gh,g™', then h; = h, by cancellation in the group G. Thus the conjugation
map i : H — H given by i (h) = ghg! is one to one. Because |H | is finite, ig must
then map H onto H,so gHg™' = H and g € N[H].

Let H be a p-subgroup of a finite group G. Then

(N[H]: H)= (G : H)(mod p).
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Part VII Advanced Group Theory

® HistoricAL NOTE

he Sylow theorems are due to the Norwegian

mathematician Peter Ludvig Mejdell Sylow
(1832-1918), who published them in a brief pa-
per in 1872. Sylow stated the theorems in terms of
permutation groups (since the abstract definition of
a group had not yet been given). Georg Frobenius
re-proved the theorems for abstract groups in 1887,
even though he noted that in fact every group can be
considered as a permutation group (Cayley’s theo-
rem [Theorem 8.16]). Sylow himself immediately

applied the theorems to the question of solving al-
gebraic equations and showed that any equation
whose Galois group has order a power of a prime p
is solvable by radicals.

Sylow spent most of his professional life as a
high school teacher in Halden, Norway, and was
only appointed to a position at Christiana Univer-
sity in 1898. He devoted eight years of his life to
the project of editing the mathematical works of his

countryman Niels Henrik Abel.
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Let % be the set of left cosets of H in G, and let H act on % by left translation, so that
h(xH) = (hx)H. Then .% becomes an H-set. Note that |.%| = (G : H). :'

Let us determine %, that is, those left cosets that are fixed under action by all clc-— :
ments of H. Now xH = h(xH)ifandonlyif H = x"'hx H,orifandonly if x"'hx € H.
ThusxH = h(xH)forallh € Hifandonlyifx~'hx = x'h(x~")~! € H forallh € H,
or if and only if x~! € N[H] (see the comment before the lemma), or if and only if|
x € N[H]. Thus the left cosets in %, are those contained in N[H]. The number of such

Since H is a p-group, it has order a power of p by Corollary 36.4. Theorem 36. 1|
| %y (mod p), that is, that (G : H) = (N[H] : H) (mod p).
A .

Let H be a p-subgroup of a finite group G. If p divides (G : H), then N[H] # H.
It follows from Lemma 36.6 that p divides (N[H] : H), which must then be differen i;

We are now ready for the first of the Sylow theorems, which asserts the exustencttl
of prime-power subgroups of G for any prime power dividing |G|.

Let G be a finite group and let |G| = p"m where n > 1 an ;
1. G contains a subgroup of order p' for each i where 1 <i < n,
2. Every subgroup H of G of order p' is a normal subgroup of a subgroup of

1. We know G contains a subgroup of order p by Cauchy’s theorem
(Theorem 36.3). We use an induction argument and show that the existence of|
a subgroup of order p' for i < n implies the existence of a subgroup of order ||
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subgroup of N[H], we can form N[H]/H, and we see that p divides
|N[H]/H|. By Cauchy’s theorem, the factor group N[H]/H has a subgroup
K which is of order p. If y : N[H] — N[H]/H is the canonical
homomorphism, then y ~![K] = {x € N[H]|y(x) € K} is a subgroup of
N[H] and hence of G. This subgroup contains H and is of order p‘*!.

2. We repeat the construction in part 1 and note that H < y~'[K] < N[H]
where |y “'[K]| = p'*!. Since H is normal in N[H], it is of course normal
in the possibly smaller group y ~'[K]. *

A Sylow p-subgroup P of a group G is a maximal p-subgroup of G, thatis, a p-subgroup
contained in no larger p-subgroup. |

Let G be a finite group, where |G| = p”"m as in Theorem 36.8. The theorem shows
that the Sylow p-subgroups of G are precisely those subgroups of order p". If P is
a Sylow p<subgroup, every conjugate gPg~! of P is also a Sylow p-subgroup. The
second Sylow theorem states that every Sylow p-subgroup can be obtained from P in
this fashion; that is, any two Sylow p-subgroups are conjugate.

(Second Sylow Theorem) Let P; and P; be Sylow p-subgroups of a finite group G.
Then P; and P; are conjugate subgroups of G.

Here we will let one of the subgroups act on left cosets of the other, and use Theorem 36.1.
Let % 'be the collection of left cosets of Py, and let P; acton £by y(x Py) = (yx)P, for
y € P,.Then Zisa P,-set. By Theorem 36.1, | %), | = |£| (mod p),and |Z| = (G : Py)
is not divisible by p, so | £, | # 0. Let x Py € £p,. Then yxP; = x Py forall y € P,
so x 'yxP, = P, for all y € P,. Thus x 'yx € P, for all y € P, so x ' P)x < P,.
Since | P;| = | P2/, we must have P; = x~! P,x, so P, and P; are indeed conjugate sub-
groups. *

} The final Sylow theorem gives information on the number of Sylow p-subgroups. A
few illustrations are given after the theorem, and many more are given in the next section.

(Third Sylow Theorem) If G is a finite group and p divides |G|, then the number of
Sylow p-subgroups is congruent to 1 modulo p and divides |G|.

Let P be one Sylow p-subgroup of G. Let.% be the set of all Sylow p-subgroups and let
P act on.% by conjugation, so that x € P carries T € . into xTx~'. By Theorem 36.1,
|.#| = |.4| (mod p). Let us find %. If T € .%, thenxTx~! =T forall x € P. Thus
P < N[T]. Of course T < N[T] also. Since P and T are both Sylow p-subgroups of
G, they are also Sylow p-subgroups of N[T']. But then they are conjugate in N[T] by
Theorem 36.10. Since T is a normal subgroup of N[T], it is its only conjugate in N[T'].
Thus T = P. Then .% = {P}. Since |.¥°| = |.%5| = 1 (mod p), we see the number of
Sylow p-subgroups is congruent to 1 modulo p.

Now let G act on .%’by conjugation. Since all Sylow p-subgroups are conjugate,
there is only one orbit in .“under G. If P € .%’then |.%’| = |orbit of P| = (G : Gp) by
Theorem 16.16. (G p is, in fact, the normalizer of P.) But (G : Gp) is a divisor of |G|,
so the number of Sylow p-subgroups divides |G|. *
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Also, it follows from Theorem 24.1 that if x and y are in the same
conjugacy class, then |C(x)l = |C(y)! (see Exercise 53). If;- for exam-
ple, cl(a) = {a, a,, ..., a,}, then

IC(a)! + 1C@,)l + + -+ + 1C(a)| = 1C(a)| N\
= 1G:C(a)! IC(a)l = |Gl = n.

So, by choosing one representative from each conjugacy class, say, x;,
X, ... 5X,, We have

K| = 2‘&| Cx)| = E| G:C(x)||C(x)| = mn.
xE

Thus, the answer to our question is mn/n® = m/n, where m is the num- |
ber of conjugacy classes in G and » is the number of elements of G. |
Obviously, when G is non-Abelian, Pr(G) is less than 1. But how much
less than 1? Clearly, the more conjugacy classes there are, the larger Pr(G) |
is. Consequently, Pr(G) is large when the sizes of the conjugacy classes
are small. Noting that Icl(a)l = 1 if and only if a € Z(G), we obtain the
maximum number of conjugacy classes when |Z(G)! is as large as possi-
ble and all other conjugacy classes have exactly two elements in each, |
Since G is non-Abelian, it follows from Theorem 9.3 that |G/Z(G)l = 4
and, therefore, |Z(G)I-= |G|/4. Thus, in the extreme case, we would have ‘
I1Z(G)| = |G|/4, and the remaining (3/4)|GI elements would be distributed I'

the number of conjugacy classes is no more than |G1/4 + (172)(3/19)\Gl,
and Pr(G) is less than or equal to 5/8. The dihedral group D, is an cxam- i
ple of a group that has probability equal to 5/8. i

The Sylow Theorems

Now to the Sylow theorems. Recall that the converse of Lagrange’s 'ﬁ
Theorem is false; that is, if G is a group-of order m and n divides m,
G need not have a subgroup of order n. Our next theorem is a partial ‘
converse of Lagrange’s Theorem. It, as well as Theorem 24.2, was first
proved by the Norwegian mathematl(:lan Ludwig Sylow (1832—1918) ;

results in finite group theory. The first gives a sufficient condition for |
the existence of subgroups, and the second gives a necessary condition. |

§ Theorem 24.3 Existence of Subgroups of Prime-Power Order
(Sylow’s First Theorem, 1872)

Let G be a finite group and let p be a prime. If p* divides |G|, then G
has at least one subgroup of order p*.
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PROOF We proceed by induction on IGl. If IGI = 1, Theorem 24.3 is
trivially true. Now assume that the statement is true for all groups of
order less than |GI. If G has a proper subgroup H such that p* divides
|H|, then, by our inductive assumption, H has a subgroup of order p*
and we are done. Thus, we may henceforth assume that p* does not
divide the order of any proper subgroup of G. Next, consider the class
equation for G in the form

IGI = 1Z(G)| + 3IG:C(a),

where we sum over a representative of each conjugacy class cl(a), where
a & Z(G). Since p* divides |G| = |G:C(a)l IC(a)! and p* does not divide
IC(a)!, we know that p must divide |G:C(a)| for all a & Z(G). It then fol-
lows from the class equation that p divides 1Z(G)|. The Fundamental
Theorem of Finite Abelian Groups (Theorem 11.1), or Theorem 9.5, then
guarantees that Z(G) contains an element of order p, say x. Since x is in
the center of G, (x) is a normal subgroup of G, and we may form the fac-
tor group G/{x). Now observe that p*~! divides |G/(x)|. Thus, by the
induction hypothesis, G/{x) has a subgroup of order p*~! and, by Exer-
cise 49 in Chapter 10, this subgroup has the form H/{x), where H is a
subgroup of G. Finally, note that |H/(x)| = p*~! and I(x)| = p imply that
|HI = p*, and this completes the proof. L

Let’s be sure we understand exactly what Sylow’s First Theorem
means. Say we have a group G of order 2% - 32 - 5* - 7. Then Sylow’s
First Theorem says that G must have at least one subgroup of each
of the following orders: 2, 4, 8, 3, 9, 5, 25, 125, 625, and 7. On the
other hand, Sylow’s First Theorem tells us nothing about the possible
existence of subgroups of order 6, 10, 15, 30, or any other divisor of
IG| that has two or more distinct prime factors. Because certain sub-
groups guaranteed by Sylow’s First Theorem play a central role in the
theory of finite groups, they are given a special name.

Definition Sylow p-Subgroup

Let G be a finite group and let p be a prime divisor of IG|. If p* divides
IGI and p**! does not divide |G|, then any subgroup of G of order p*
is called a Sylow p-subgroup of G.

So, returning to our group G of order 2° - 3% - 5% - 7, we call any sub-
group of order 8 a Sylow 2-subgroup of G, any subgroup of or-
der 625 a Sylow 5-subgroup of G, and so on. Notice that a Sylow
p-subgroup of G is a subgroup whose order is the largest power of
p consistent with Lagrange’s Theorem.
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Since any subgroup of order p is cyclic, we have the following gen-
eralization of Theorem 9.5, first proved by Cauchy in 1845. His proof
ran nine pages!

Corollary Cauchy’s Theorem

Let G be a finite group and let p be a prime that divides the order
of G. Then G has an element of order p.

Sylow’s First Theorem is so fundamental to finite group theory that
many different proofs of it have been published over the years [our proof
is essentially the one given by Georg Frobenius (1849-1917) in 1895].
Likewise, there are scores of generalizations of Sylow’s Theorem.

Observe that the corollary to the Fundamental Theorem of Finite
Abelian Groups and Sylow’s First Theorem show that the converse of
Lagrange’s Theorem is true for all finite Abelian groups and all finite
groups of prime-power order.

There are two more Sylow theorems that are extremely valuable
tools in finite group theory. But first we introduce a new term.

Definition Conjugate Subgroups
Let H and K be subgroups of a group G. We say that H and K are
conjugate in G if there is an element g in G such that H = gKg™'.

Recall from Chapter 7 that if G is a finite group of permutations on a
set Sand i € S, then orb (i) = {¢(i) | € G} and lorb(i)I divides IGl.

i Theorem 24.4 Sylow’s Second Theorem

IfHisa subgroup of a finite group G and |H| :sapowerofaprbnep,
then H is contained in some Sylow p-subgroup of G.

PROOF Let K be a Sylow p-subgroup of Gand let C = {K|, K,, ..., K}
with K = K be the set of all conjugates of K in G. Since comugaﬂon is an
automorphlsm each element of C is a Sylow p-subgroup of G. Let §.
denote the group of all permutations of C. For each g € G, deﬁne
$:C— Cby ¢ (K) = gK.g™!. Itis easy to show that each ¢

Now define a mapping 7:G — S by T(g) = 4) Since <,§ a(K) =
@WK (gh)™' = ghKh g ! = gb,(K)g™' = & ($,(K)) =
(¢g¢'h)(Kr.), we have d)gh = (;bgd)k, and therefore T is a homomorphism
from G to S,.
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Next consider T(H), the image of H under T. Since |H| is a power
of p, so is IT(H)| (see property 6 of Theorem 10.2). Thus, by the Orbit-
Stabilizer Theorem (Theorem 7.3), for each i, IorbT(H)(Ki)l divides
IT(H)I, so that lorb m(K)I is a power of p. Now we ask: Under what
condition does Iorb (K)I = 1?7 Well, IorbT (K)! = 1 means that
cj&(K)-gKg l—Kfcorallg;EHthatls Iorb (K)I 1 if and
only if H = N(K)). But the only elements of N(K)) that have orders that
are powers of p are those of K; (see Exercise 9). Thus, lorb,,,(K)I =1
if and only if H = K.

So, to complete the proof, all we need to do is show that for some i,
Iorbmﬂ(Kf)l = 1. Analogous to Theorem 24.1, we have |C| = |G:N(K)|
(see Exercise 21). And since |G:K| = |G:N(K)|IN(K):K] is not divisible
by p, neither is |Cl. Because the orbits partition C, ICl is the sum of
powers of p. If no orbit has size 1, then p divides each summand and,
therefore, p divides ICl, which is a contradiction. Thus, there is an orbit
of size 1, and the proof is complete. |

I Theorem 24.5 Sylow’s Third Theorem

Let p be a prime and let G be a group of order p*m, where p does not
divide m. Then the number n of Sylow p-subgroups of G is equal to

1 modulo p and divides m. Furthermore, any two Sylow p-subgroups
of G are conjugate.

PROOF Let K be any Sylow p-subgroup of G and let C = {K|,
K,, ..., K, } with K = K, be the set of all conjugates of K in G. We
first prove that n mod p = 1.

Let S. and T be as in the proof of Theorem 24.4. This time
we consider T(K), the image of K under T. As before, we have
Iorbirt K)(K )l is a power of p for each i and 10rbT(K)(Ki)i = 1 if and only
if K = K,. Thus, lorb,,(K,)l = 1 and lorb,, (K))! is a power of p
greater than 1 for all i # 1. Since the orbits partition C, it follows that,
modulo p,n = ICl = 1.

Next we show that every Sylow p-subgroup of G belongs to C. To
do this, suppose that H is a Sylow p-subgroup of G that is not in C. Let
Sc and T be as in the proof of Theorem 24.4, and this time consider
T(H). As in the previous paragraph, |Cl is the sum of the orbits’ sizes
under the action of T(H). However, no orbit has size 1, since H is not
in C. Thus, |Cl is a sum of terms each divisible by p, so that, modulo p,
n = |Cl = 0. This contradiction proves that H belongs to C, and that
n is the number of Sylow p-subgroups of G.

Finally, that n divides |G| follows directly from the fact that n =
|G:N(K)| (see Exercise 21). |
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order p or pg; in the latter case, ¢? has order p by Theorem 7.8. In either case, G
contains an element of order p. Therefore, the theorem is true for abelian
groups of order n and, hence, by induction for all finite abelian groups. €

Proofs of the Sylow Theorems

We now have all the tools needed to prove the Sylow Theorems.

Proof of the First Sylow Theorem 8.13 The proofis by induction on the order of G.
If |G| = 1, then p° is the only prime power that divides |G|, and G itselfis a
subgroup of order p°. Suppose |G| > 1 and assume inductively that the
theorem is true for all groups of order less than |G|. Combining the second and
third forms of the class equation of G shows that

|G| = |Z(G)] +[G:C(a)] + [G:Clay)] + -+ - + [G:C(a)],

where for each i, [G:C(a;)] > 1. Furthermore, |Z(G)| = 1 (since e € Z(G)), and
|Cle)] < |G| (otherwise, [G:C(a;)] = 1).

Suppose there is an index j such that p does rot divide [G:C(a,)]. Then by
Theorem 1.8 p* must divide |C(a;)| because p* divides |G| by hypothesis and
|G| = |C(a,)| - [G:C(a,)]by Lagrange’s Theorem. Since the subgroup C(a;) has
order less than |G|, the induction hypothesis implies that C(a,), and, hence, G
has a subgroup of order p*.

On the other hand, if p divides [G:C(a,)] for every i, then since p divides
|G|, p must also divide |G| — [G:C(a,)] -+ —[G:C(a,)] = |Z(G)|. Since
Z((3) is abelian, Z(G) contains an element ¢ of order p by Lemma 8.22. Let N be
the cyclic subgroup generated by ¢. Then N has order p and is normal in G
(Exercise 8). Consequently, the order of the quotient group G/N, namely |G|/p,
is less than |G| and divisible by p* 1. By the induction hypothesis G/N has a
subgroup T of order p*~ . There is a subgroup H of G such that N C H and
T = HIN by Theorem 7.44. Lagrange’s Theorem shows that

|H| = IN| - IHIN| = IN| - IT| = pp*~* = p*
So G has a subgroup of order p* in this case, too. ¢
The basic tools needed to prove the last two Sylow Theorems are very
similar to those used above, except that we will now deal with conjugate sub-
groups rather than conjugate elements. More precisely, let H be a fixed sub-

group of a group G and let A and B be any subgroups of G. We say that A is
H-conjugate to B if there exists an x € H such that

B =x"'Ax = {x'ax | a € A}.

In the special case when H is the group G itself, we simply say that A is
conjugate to B.

2N
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THEOREM 8.23 Let H be a subgroup of a group G. Then H-conjugacy is an
equivalence relation on the set of all subgroups of G.

Praof Copy the proof of Theorem 8.19, using subgroups A, B, C in place of
elements a, b,c. ®

Let A be a subgroup of a group G. The normalizer of A is the set N(A)
defined by

N@A) ={geG|g'Ag = A}.

THEOREM 8.24 IfA is a subgroup of a group G, then N(A) is a subgroup of G and
A is a normal subgroup of N(A).

Proof Exercise 7 shows that A C N(A) and that g e N(A) if and only if Ag = gA.
Using this fact, the proof of Theorem 8.20 can be readily adapted to prove that
N(A) is a subgroup. The definition of N(A) shows that A is normal in N(A). €

THEOREM 8.25 Let H and A be subgroups of a finite group G. The number of
distinct H-conjugates of A (that is, the number of elements in the equivalence
class of A under H-conjugacy) is [H:H N N(A)] and, therefore, divides |H|.

Proof The proof of Theorem 8.21 carries over to the present situation if you
replace Gby H,a by A, and C by H N N(A). ¢

LEMMA 8.26 Let Q be a Sylow p-subgroup of a finite group G. If x € G has order
a power of p and x 'Qx = @, then x € Q.

Proof Since @ is normal in N(Q) by Theorem 8.24, the quotient group N(Q)/Q is
defined. By hypothesis, x € N(Q). Since |x| is some power of p, the coset Qx in
N(Q)/Q also has order a power of p. Now Qx generates a cyclic subgroup T' of
N(Q)/Q whose order is a power of p. By Theorem 7.44, T = H/Q, where H is a
subgroup of G that contains . Since the orders of the groups @ and T are each
powersof p and |H| = |Q| - |T'| by Lagrange’s Theorem, |H| must be a power
of p. But @ C H, and |Q| is the largest power of p that divides |G| by the
definition of a Sylow p-subgroup. Therefore, @ = H, and, hence, T = H/Q is the
identity subgroup. So the generator @x of T must be the identity coset Qe. The
equality Qx = Qe implies thatx e @. @

Proof of the Second Sylow Theorem 8.15 Since K is a Sylow p-subgroup, K has
order p", where |G| = p"m andp f m.LetK = K, ,K,, . . . , K, be the distinct
conjugates of K in G. By Theorem 8.25 (with H = G and K = A), ¢t = [G:N(K)].
Note that p does not divide t [reason: p"m = |G| = |N(K)| - [G:N(K)] =
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IN(K)| - t and p" divides |[N(K)| because K is a subgroup of N(K)]. We must
prove that the Sylow p-subgroup P is conjugate to K, that is, that P is one of the
K;. To do so we use the relation of P-conjugacy.

Since each K, is a conjugate of K; and conjugacy is transitive, every conju-
gate of K, in G is also a conjugate of K; . In other words, every conjugate of K is
some K;. Consequently, the equivalence class of K; under P-conjugacy contains
only various K. So the set S = {K,, K, . . . , K} of all conjugates of K is a
union of distinct equivalence classes under P-conjugacy. The number of sub-
groups in each of these equivalence classes is a power of p because by Theorem
8.25 the number of subgroups that are P-conjugate to K; is [P:P N N(K})],
which is a divisor of |P| = p" by Lagrange’s Theorem. Therefore, ¢ (the number
of subgroups in the set S) is the sum of various powers of p (each being the
number of subgroups in one of the distinct equivalence classes whose union is
S). Since p doesn’t divide ¢, at least one of these powers of p must be p°® = 1.
Thus some K; is in an equivalence class by itself, meaning that x 'K;x = K, for
every x € P. Lemma 8.26 (with @ = K;) implies that x € K; for every such x, so
that P C K,. Since both P and K, are Sylow p-subgroups, they have the same
order. Hence, P = K;.

Proof of the Third Sylow Theorem 8.17 Let S = (K, . . . , K,} be the set of all
Sylow p-subgroups of G. By the Second Sylow Theorem, they are all conjugates
of K,. Let P be one of the K; and consider the relation of P-conjugacy. The only
P-conjugate of P is P itself by closure. The proof of the Second Sylow Theorem
shows that the only equivalence class consisting of a single subgroup is the
class consisting of P itself. The proof also shows that S is the union of distinct
equivalence classes and that the number of subgroups in each class is a power
of p. Just one of these classes contains P, so the number of subgroups in each of
the others is a positive power of p. Hence, the number ¢ of Sylow p-subgroups is
the sum of 1 and various positive powers of p and, therefore, can be written in
the form 1 + kp for some integer k.

lp EXERCISES

NOTE: Unless stated otherwise, G is a finite group and p is a prime.

Wh. 1. List the distinct conjugacy classes of the given group.
(a) D, (b) S, (e) A,

2. If a € G, then show by example that C(e) may not be abelian. [Hint: Ifa =
(12) in S;, then (34) and (345) are in C(a).]

3. If H is a subgroup of G and a € H, show by example that the conjugacy class
of @ in H may not be the same as the conjugacy class of a in G.
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(c) Using this and the result for Problem 9(b), prove that in A5 there
! is no normal subgroup N other than (¢) and 4,.
11. Using Theorem 2.11.2 as a tool, prove that if o(G) = p", p a prime
number, then G has a subgroup of order p* forall 0 < o < n. 202 ™Men Z(GY
. If o(G) = p", p a prime number, prove that there exist subgroups
N,i=0,1,...,r (forsomer)suchthat G= N, o N, o N, o---
D N, = (¢) where N; is a normal subgroup of N;_; and where
N, _,/N, is abelian.
13. If o(G) = p", p a prime number, and H # G is a subgroup of G,
show that there exists an x € G, x ¢ H such that x~ 1Hx = H.

n—1

14. Prove that any subgroup of order p in a group G of order p",

f a prime number, is normal in G.

*15. If o(G) = p", p a prime number, and if N' # (¢) is a normal subgroup
of G, prove that N n Z # (e), where Z is the center of G.

~—16. If G is a group, Z its center, and if G/Z is cyclic, prove that G must
i be abelian.

5% 17. Prove that any group of order 15 is cyclic. P
“18. Prove that a group of order 28 has a normal subgroup of order 7. e

Y=-19. Prove that if a group G of order 28 has a normal subgroup of order 4,
then G is abelian.

212 Sylow's Theorem

Lagrange’s theorem tells us that the order of a subgroup of a finite group is
a divisor of the order of that group. The converse, however, is false. There
are very few theorems which assert the existence of subgroups of prescribed
order in arbitrary finite groups. The most basic, and widely used, is a
classic theorem due to the Norwegian mathematician Sylow.

We present here three proofs of this result of Sylow. The first is a very
elegant and elementary argument due to Wielandt. It appeared in the
journal Archiv der Matematik, Vol. 10 (1959), pages 401-402. The basic
elements in Wielandt’s proof are number-theoretic and combinatorial. It
has the advantage, aside from its elegance and simplicity, of producing the
subgroup we are seeking. The second proof is based on an exploitation of -
induction in an interplay with the class equation. It is one of the standard -
classical ‘proofs, and is a nice illustration of combining many of the ideals
developed so far in the text to derive this very important cornerstone due to
Sylow. The third proof is of a completely different philosophy. The basic
idea there is to show that if a larger group than the one we are considering

satisfies the conclusion of Sylow’s theorem, then our group also must.
1
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This forces us to prove Sylow’s theorem for a speci#l family of groups—the
symmetric groups. By invoking Cayley’s theorem (Theorem 2.9.1) we are
then able to deduce Sylow’s theorem for all finite groups. Apart from this
strange approach—to prove something for a given group, first prove it for a
much larger one—this third proof has its own advantages. Exploiting the
ideas used, we easily derive the so-called second and third parts of Sylow’s
theorem.

One might wonder: why give three proofs of the same result when, clearly,
one suffices? The answer is simple. Sylow’s theorem is that important that
it merits this multifront approach. Add to this the completely diverse
nature of the three proofs and the nice application each gives of different
things that we have learned, the justification for the whole affair becomes
persuasive (at least to the author). Be that as it may, we state Sylow’s
theorem and get on with Wielandt’s proof.

THEOREM 2.12.1 (Syrow) If p is a prime number and p* | o(G), then

G has a subgroup of order p*.

Before entering the first proof of the theorem we digress slightly to a
brief number-theoretic and combinatorial discussion. ;

The number of ways of picking a subset of k elements from a'set of n
elements can easily be shown to be

n\ _ n!
(k) kl(n — k)1

If n = p*m where p is a prime number, and if " | m but p"** ¥ m, consider

(p*m)= (#m)!

#) @em -

_Fmm = 1) (B — ) (P = gt 4 1)
PO =D =)=+ )

The question is, What power of p divides (Pp‘m)? Looking at' this number,

written 'out as we have written it out; one can see that except for the term
m in the numerator, the power of p dividing (p*m — i) is the same as that
dividing p* — 4, so all powers of ¢ cancel out except the power which

divides m. Thus
r| ? m) but r+1 (ﬁ m)'
? ( ut: prtl
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First Proof of the Theorem. Let .# be the set of all subsets of G which !

have p* elements. Thus .# has (p; fz) elements. Given M,, M, € # ;I"J.ﬁ S

(M is a subset of G haviﬁg " elements, and likewise so is M,) define ﬂm{’

M, ~ M, if there exists an element g e G such that M, = M,g. It is 97%1[.
immediate to verify that this defines an equivalence relation on #. We for sipst/s— ‘

claim that there is at least one equivalence class of elements in . such that c:::: ;“"'““‘f"’ ;

the number of elements in this class is not a multiple of #"**, for if #"+1 is of m, If oy

a divisor of the size of each equivalence class, then #"* ! would be a divisor &ez%t:d
e

of the number of elements in #. Since # has (‘b :ﬁ) elements and %3

Each molhpe of
,..amrgk dMFK fq

PRI ™Y i cannot be the case. Let (ML, ... M3} 'Bé siich ah s 040 deve
pﬂ of se ™M

equivalence class in # where p'* 1 } n. By our very definition of equivalence ™ ¥ ('?-i
in #,if ge G, for eachi =1,...,n, Mg = M, for some j, 1 <j <n. b:j- dﬂ;&;ue
We let H = {ge G| Mg = M,}. Clearly H is a'subgroup of G, for if 4t jast ont
a, b€ H, then Mya = M,, M;b = M, whence Myab = (Mya)b = Myb = %% b
M,. We shall be vitally concerned with o(H). We claim that no(H) = € «der g<
0(G); we leave the proof to the reader, but suggest the argument used in ™9 5 ™
the counting principle in Section 2.11. Now no(H) = o(G) = p"m; since

Pl yn and p**" | p'm = no(H), it must follow that p*|o(H), and so 3rd

o(H) > p* However, if m, € M,, then for all he H, mhe M. Thus 's s7€5
M, has at least o(H) distinct elements.  However, M, was a subset of G 1= ("E)
containing p* elements. Thus p* > o(H). Combined with o(H) > p* we m
have that o(H) = p*. But then we have exhibited a subgroup of G having exactly  (med f}
2" elements, namely H. This proves the theorem; it actually has done more— whaihy mush

it has constructed the required subgroup before our very eyes! be -n-w_*_
ince
What is usually known as Sylow’s theorem is a special case of Theorem -f——..._'é_
2.12.1, namely that ®hice) ¢

COROLLARY If p™ | o(G), p™*' ¥ o(G), then G has a subgroup of order p™. g{w':”} )

A subgroup of G of order p™, where p™ | o(G) but p™* ! } o(G), is called a mﬂ side
p-Sylow subgroup of G. The corollary above asserts that a finite group has redve . £
p-Sylow subgroups for every prime p dividing its order. Of course the Wi.:ﬁ
conjugate of a p-Sylow subgroup is a p-Sylow subgroup. In a short while
we shall see how any two p-Sylow subgroups of G—for the same prime p—
are related. We shall also get some information on how many p-Sylow
subgroups there are in G for a given prime . Before passing to this, we want
to give two other proofs of Sylow’s theorem.

We begin with a remark. As we observed just prior to the corollary,

the corollary is a special case of the theorem. However, we claim that the
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theorem is easily derivable from the corollary. That is, if we know that G
possesses a subgroup of order p™, where p™ | o(G) but p™*! ¥ o(G), then
we know that G has a subgroup of order p* for any « such that p* | o(G).
This follows from the result of Problem 11, Section 2.11. This result states
that any group of order p™, p a prime, has subgroups of order p* for any
0 < & < m. Thus to prove Theorem 2.12.1—as we shall proceed to do,
again, in two more ways—it is enough for us to prove the existence of
p-Sylow subgroups of G, for every prime p dividing the order of G.

. Second Proof of Sylow’'s Theorem. We prove, by induction on the order

of the group G, that for every prime p dividing the order of G, G has a
p-Sylow subgroup.

If the order of the group is 2, the only relevant prime is 2 and the group
certainly has a subgroup of order 2, namely itself.

So we suppose the result to be correct for all groups of order less than
o(G). From this we want to show that the result is valid for G. Suppose,
then, that p™ | o(G), p™* ! ¥ o(G), where p is a prime, m > 1. If p™ | o(H)
for any subgroup H of G, where H # G, then by the induction hypothesis,
H would have a subgroup 7 of order p™. However, since T is a subgroup
of H, and H is a subgroup of G, T too is a subgroup of G. But then T would
be the sought-after subgroup of order p™. o, £l oy N()

We therefore may assume that p™ Y o(H) for-any-subgreup-#-of G, where
H # G. We restrict our attention to a limited set of such subgroups.
Recall that if a € G then N(a) = {x € G|xa = ax} is a subgroup of G;
moreover, if a ¢ Z, the center of G, then N(a) # G. Recall, too, that the
class equation of G states that

oL 0kE)
°6) = X Sw@y

where this sum runs over one element a from each conjugate class. We
separate this sum into two pieces: those @ which lie in Z, and those which
don’t. This gives

> o(G)
o(G) =z + ; TN

where z = 0(Z). Now invoke the reduction we have made, namely, that
p™ ¥ o(H) for any subgroup H # G of G, to those subgroups N (a) for a ¢ Z.
Since in this case, p™ | o(G) and p™ f o(N(a)), we must have that

o6)
o(N(a))

o(G)
o(N(a))

Restating this result,
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for every a € G where a ¢ Z. Look at the class equation with this information
" in hand. Since p™ | o( G), we have that p | o(G); also Lo Sestt sen seréewed
€ rend "estmr - | N
) O(G) some a..EG o Ttis
oy a(N(a)) msi-rudw-\ ofs .Sdbs“"f

Thus the class equation gives us that p | z. Since p | z = o(Z), by Cauchy’s
theorem (Theorem 2.11.3), Z has an element & # ¢ of order p. Let
B = (b), the subgroup of G generated by b. B is of order p; moreover,
since b € Z, B must be normal in G. Hence we can form the quotient group
G = G/B. We look at G. First of all, its order is 0o(G)/o(B) = o(G)/p,
hence is certainly less than o(G). Secondly, we have p™ ! |o(G), but
2™ X o(G). Thus, by the induction hypothesis, G has a subgroup P of order
" 1. Let P = {xe G|xBe P}; by Lemma 2.7.5, P is a subgroup of
G. Moreover, P ~ P|B (Prove!); thus

&
St ogpy = 2B) L oP)
750 2 LT am i

This results in o(P) = p™. Therefore P is the required g-Sylow subg'roup of
G. This completes the induction and so proves the theorem.

With this we have finished the second proof of Sylow’s theorem. Note
that this second proof can easily be adapted to prove that if * | o(G), then
G has a subgroup of order p* directly, without first passing to the existence
of a p-Sylow subgroup. (This is Problem 1 of the problems at the end of
this section.)

We now proceed to the third proof of Sylow’s theorem

Third Proof of Sylow’s Theorem. Before going into the details of the be
proof proper, we outline its basic strategy. We will first show that the prepmcé
symmetric groups S,-, # a prime, all have p-Sylow subgroups. The next to ;‘i‘é"
step will be to show that if G is contained in M and M has a p-Sylow sub-
group, then G has a p-Sylow subgroup. Finally we will show, via Cayley’s
theorem, that we can use S, for large enough k, as our M. With this we
will have all the pieces, and the theorem will drop out.
In carrying out this program in detail, we will have to know how large
a p-Sylow subgroup of §,. should be. This will necessitate knowing what
power of p divides (p")!. This will be easy. To produce the p-Sylow sub-
group of S, will be harder. To carry out another vital step in this rough
sketch, it will be necessary to introduce a new equivalence relation in groups,
and the corresponding equivalence classes known as double cosets. This
will have several payoffs, not only in pushing through the proof of Sylow’s
theorem, but also in getting us the second and third parts of the full Sylow
theorem.
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So we get down to our first task, that of finding what power of a prime
p exactly divides (p*)!. Actually, it is quite easy to do tflis for n! for any
integer n (see Problem 2). But, for our purposes, it will be clearer and will
suffice to do it only for (p*)!.

Let n(k) be defined by p"® | (#*)! but p"®+1 y (p%)1.

LEMMA 2121 n(k) =1 + p + -+ 4 p*~ 1.

Proof. If k = 1 then, since p! = 1:2---(p — 1) -p, it is clear that
2| p! but p2 f p!. Hence n(l) = 1, as it should be.

What terms in the expansion of: ($*)! can contribute to powers of p
dividing (p*)!? Clearly, only the multiples of p; that is, , 2p,...,p * " 'p.
In other words n(k) must be the power of p which - divides
p(20)(3p) = +- (7 'p) = p”7'(#*7 ")\ But then n(k) = p*"* + n(k — 1)..
Similarly, n(k — 1) = njk — 2) + $*72, and so on. Write these out as

n(k) = n(k — 1) = g%,
n(k — 1) = n(k — 2) = P2,

n(2) — a(l) = ,
n(1) =
Adding these up, with the cross-cancellation that we get, we obtain

n(k) =1 + p + p? + -+ + p* !, Thisis what was claimed in the lemma,
so we are done.

We are now ready to show that S, has a p-Sylow subgroup; that is, we
shall show (in fact, produce) a subgroup of order "™ in §..

LEMMA 2.12.2 S, has a p-Sylow subgroup.

Proof. We go by induction on k. If k¥ = 1, then the element (1 2 ... p),
in S, is of order p, so generated a subgroup of order p. Since n(l) =l
the result certainly checks out for k = 1.

Suppose that the result is correct for £ — 1; we want to show that it
then must follow for k. Divide the integers 1,2,..., p* into p clumps,
each with p*7 1 elements as follows:

(1,200t 'L BT+ L2 20, 2.
{6 - 1)1’jt Lt sy oodlh
The permutation ¢ defined by o= (1,71 + 1,257 +1,...,

- l)pb'l ¥ l)'”(japk_l +j12p*_1 b AL l)plﬂl P Py s
(=1, 26, ..., (p = 1)p* 1, %) has the following properties:

1. 6 = e
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2. If 7 is a permutation that leaves all i fixed for i > p*~! (hence, affects |

only 1,2,...,p*" 1), then 6™ 76 moves only elements in {p*~* + 1,
P71 +2,...,2p5 1}, and more generally, 6 /16’ moves only elements
in ("1 + Lt 4+ 2,00, G+ DT

Consider 4 = {t € Sy | ©() =iifi > p*"1}. A is a subgroup of S e
and elements in 4 can carry out any permutation on 1,2,...,p*" L
From this it follows easily that A & §-«. By induction, 4 has a subgroup
P, of order p"*~ 1),

-y Let - T o= Pylo™ 1P,a)(cr ZP,cz) (6= P~ VPP ) = PPy Py 4
where P; = ¢~ 'P,¢'. Each P, is isomorphic to P, so has order p"*~ 1),
Also elements in distinct P’s influence nonoverlapping sets of integers,
hence commute. Thus T is a subgroup of S,. What is its order? Since
PinP;= () if0<i#j<p— 1, weseethato(T) = o(P,)? = pP"¢~ 1),
We are not quite there yet. T is not the p-Sylow subgroup we seek!

Since 6” = ¢ and ¢ 'Py¢' = P, we have ¢7'To = T. Let P =
{o/t|te T,0 <j<p—1}. Since a¢ T and ¢ 'To = T we have two
things: firstly, 7" is a subgroup of S, and, furthermore, o(P) = p-o(7T) =

pep"E P = pr—1p+1 Now we are finally there! P is the sought-aﬁ;er
p—Sonw subgroup of Sp,,

Why? Well, what is its order? It is p"*~DP*1  But n(k — 1) =
L+p+- - +p2% hence pn(k — 1) + 1 =1 +p + -+ + p* 1 = n(k).
Since now o(P) = p"““, P is indeed a p-Sylow subgroup of S .

Note something about the proof. Not only does it prove the lemma, it
actually allows us to construct the p-Sylow subgroup inductively. We
follow the procedure of the proof to construct a 2-Sylow subgroup in §,.

Divide 1, 2, 3, 4 into {1,2} and {3,4}. Let P, =((12)) and ¢ =
(13)(24). Then P, = ¢~ 'Pyo = (34). Our 2-Sylow subgroup is then
the group generated by (1 3)(2 4) and

T = PP, = {(12), (34),(12)(34), ¢).

In order to carry out the program of the third proof that we outlined, we
now introduce a new equivalence relation in groups (see Problem 39,
Section 2.5).

DEFINITION Let G be a group, 4, B subgroups of G. If x, y € G define
x ~ yify = axbforsomeae 4, b e B.

We leave to the reader the verification—it is easy—of

LEMMA 2123 The relation defined above is an equivalence relation on G.
The equivalence class of x € G is the set AxB = {axb|a € 4, b € B}.

97



Group Theory Ch. 2

We call the set AxB a double coset of A, B in G.

If A, B are finite subgroups of G, how many elements are thcre in the
double coset AxB? To begin with, the mapping 7T:4xB — AxBx~ glvcn
by (axb)T = axbx™! is one-to-one and onto (verify). Thus o(4xB) =
o(AxBx~'). Since xBx~ ! is a subgroup of G, of order o(B), by Theorem 2.5.1, |

o(4xB) = o(A4xBx~ l) Te] o(A)o(xBx~ l) N o(4)o(B)
o(dnxBx~1) o4 n _,‘Bx—x)'

‘We summarize this in

LEMMA 2124 If A, B are finite subgroups of G then

o(4)o(B)

o(AxB) = Ry e

We now come to the gut step in this third proof of Sylow’s theorem.

LEMMA 2125 Let G be a finite group md\.mppose that G is a subgroup of the |
Jinite group M. Suppose further that M has a p-Sylow subgroup Q. Then G has a
p-Sylow subgroup P. In fact, P = G N xQx~* for some x € M. . ‘

Proof. = Before starting the details of the proof, we translate the hypoth-
eses somewhat. Suppose that p™ | o(M), p™*! fo(M), @ is a subgroup
of M of order p™. Let o(G) = p"t where p f t. We want to produce a sub- |
group P in G of order p".

Consider the double coset decomposition of M given by G and Q, .‘
M = |) GxQ. By Lemma 2.12.4,

o) — . 2G)@) _ "
ki e g S sy e e

Since G N xQx~ ! is a subgroup of x@Qx™ !, its order is p™. We claim that
m, = n for some ¥ € M. If not, then

o(G:Q) = L = yrinm,

P I
so is divisible by p™*!. Now, since M = |) GxQ, and this is disjoint union,
o(M) = ¥ 0o(GxQ), the sum running over one element from each double
coset. But p™*1|0(GxQ); hence p™**|o(M). This contradicts p™* 1 ¥ o(M).
Thus m, = n for some xe M. But then o(G n xQx~ ') = p". Since
G n xQ x~ ' = P is a subgroup of G and has order p", the lemma is proved.

We now can easily prove Sylow’s theorem. By Cayley’s theorem
(Theorem 2.9.1) we can isomorphically embed our finite group G in §,,
the symmetric group of degree n. Pick k so that n < p*; then we can iso-
morphically embed S, in S (by acting on 1,2,...,n only in the set
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1,2,...,n...,4%, hence G is isomorphically embedded in Si. By
Lemma 2.12.2, Sy has a p-Sylow subgroup. Hence, by Lemma 2.12.5,
G must have a p-Sylow subgroup. This finishes the third proof of Sylow’s
theorem,

This third proof has given us quite a bit more. From it we have the
machinery to get the other parts of Sylow’s theorem.

THEOREM 2.12.2 (Seconp Part oF SyLow’s THEOREM) If G is a finite

group, p a prime and p" | o(G) but p"*1 ¥ o(G), then any two subgroups of G of
order p" are conjugate.

Proof. Let A, B be subgroups of G, each of order p". We want to show
that A = gBg~ ! for some g € G.

Decompose G into double cosets of 4 and B; G = ) 4xB. Now, by
Lemma 2.12.4,

o(A)o(B)

o(4AxB) = m .

If A # xBx™! for every x € G then o(4 N xBx™ ') = p™ where m < n.
Thus
- 2n
o(AxB) - O(A)O(B) = p_m A PZn—m
" b4

and 2n — m > n + 1. Since p"** | o(AxB) for every x and since o(G) =
3 0(A4xB), we would get the contradiction p"** | o(G). Thus 4 = gBg™*
for some g € G. This is the assertion of the theorem.

Knowing that for a given prime p all p-Sylow subgroups of G are conjugate
allows us to count up precisely how many such p-Sylow subgroups there
-are in G. The argument is exactly as that given in proving Theorem 2.11.1.
In some earlier problems (see, in particular, Problem 16, Section 2.5) we
discussed the normalizer N(H), of a subgroup, defined by N(H) =
{* e G| xHx~* = H}. Then, as in the proof of Theorem 2.11.1, we have
that the number of distinct conjugates, xHx~*, of H in G is the index of N(H) in G.
Since all p-Sylow subgroups are conjugate we have

-LEMMA 2.12.6 The number of p-Sylow subgroups in G equals o(G)[o(N(P)),
where P is any p-Sylow subgroup of G. In particular, this number is a divisor of o(G).

However, much more can be said about the number of p-Sylow subgroups
there are, for a given prime p, in G. We go into this now. The technique
will involve double cosets again. '
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THEOREM 2.12.3 (THrD PArT oF SyLow’s THEOREM)  The number of |
D-Sylow subgroups in G, for a given prime, is of the form 1 + kp.

Proof. Let P be a p-Sylow subgroup of G. We decompose G into double
cosets of P and P. Thus G = |) PxP. We now ask: How many elements
are there in PxP? By Lemma 2.12.4 we know the answer:

o(P)*
o(P n xPx~ 1)
Thus, if P~ xPx~! # P then p"*!|o(PxP), where p" = o(P). Para-
phrasing this: if x ¢ N(P) then p"*! | o(PxP). Also, if x € N(P), then PxP =
P(Px) = P?x = Px, so o(PxP) = p" in this case.
Now

o(PxP) =

o(G) = PxP o(PxP),
(6) = Zo olPsP) + 2o olPxP)

xeN(P)
where each sum runs over one element from each double coset. However,
if x e N(P), since PxP = Px, the first sum is merely 3, ) 0(Px) over
the distinct cosets of P in N(P). Thus this first sum is just o( N(P)). What
about the second sum? We saw that each of its constituent terms is divisible
by p"*1, hence .

va- 1
We can thus write this second sum as

> o(PxP) = p"*lu.

x ¢ N(P)
Therefore o(G) = o(N(P)) + p"*'u, so
O(G) 4y 4 pl"‘ lﬂ :

o(N(P)) o(N(P))
Now o(N(P)) | o(G) since N(P) is a subgroup of G, hence p"* 'ufo( N (P))
is an integer. Also, sincep"*! ¥ o(G), p"* ! can’t divide o(N(P)). But then
2" tufo(N (P)) must be divisible by p, so we can write "+ lujo(N(P)) as kp,
where k is an integer. Feeding this information back into our equation
above, we have

o(PxP).

x¢N(P)

o(G)

3 T I

. Recalling that o(G)/o(N(P)) is the number of p-Sylow subgroups in G,

we have the theorem.

In Problems 20-24 in the Supplementary Problems at the end of ‘this,
chapter, there is outlined another approach to proving the second and third
parts of Sylow’s theorem. !

We close this section by demonstrating how the various parts of Sylow’s
theorem can be used to gain a great deal of information about finite groups.
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Let G be a group of order 112-132, We want to determine how many
11-Sylow subgroups and how many 13-Sylow subgroups there are in G.
The number of 11-Sylow subgroups, by Theorem 2.12.13, is of the form

1 + 11k By Lemma 2.12.5, this must divide 11%-132; being prime to 11,
it must divide 132, Can 132 have a factor of the form 1 + 11k? Clearly no,
other than 1 itself. Thus 1 + 11k = 1, and so there must be only one 11-
Sylow subgroup in G. Since all 11-Sylow subgroups are conjugate (Theorem
2.12.2) we conclude that the 11-Sylow subgroup is nermal in G.

What. about the 13-Sylow subgroups? Their number is of the form
1 + 13k and must divide 112132, hence must divide 112, Here, too, we
conclude that there can be only one 13-Sylow subgroup in G, and it must
be normal.

We now know that G has a normal subgroup 4 of order 112 and a normal
subgroup B of order 132, By the corollary to Theorem 2.11.2, any group
of order p? is abelian; hence 4 and B are both abelian. Since 4 N B = (e),
we easily get AB = G. Finally, if ae 4, be B, then aba™ '™ =
a(ba™'6™') € A since 4 is normal, and aba” "' = (aba~*)b~! € B since
B is normal. Thusaba™'6"'€ A n B = (¢). Thisgivesusaba™ 67! = ¢,
and so ab = bafor a € 4, b € B. This, together with 4B = G, A, B abelian,
allows us to conclude that G is abelian. Hence any group of order 112132
must be abelian.

We give one other illustration of the use of the various parts of Sylow’s
theorem. Let G be a group of order 72; o(G) = 2°3%. How many 3-Sylow
subgroups can there be in G? If this number is ¢, then, according to Theorem
2.12.3, ¢t = 1 + 3k. According to Lemma 2.12.5, ¢| 72, and since ¢ is
prime to 3, we must have ¢| 8. The only factors of 8 of the form 1 + 3k
are 1 and 4; hence ¢ = 1 or ¢t = 4 are the only possibilities. In other words
G has either one 3-Sylow subgroup or 4 such.

If G has only one 3-Sylow subgroup, since all 3-Sylow subgroups are
conjugate, this 3-Sylow subgroup must be normal in G. In this case G
would certainly contain a nontrivial normal subgroup. On the other hand
if the number of 3-Sylow subgroups of G is 4, by Lemma 2.12.5 the index of
N in G is 4, where N is the normalizer of a 3-Sylow subgroup. But 72 } 4! =
(i(N))!. By Lemma 2.9.1 N must contain a nontrivial normal subgroup of
G (of order at least 3). Thus here again we can conclude that G contains a
nontrivial normal subgroup. The upshot of the discussion is that any group
of order 72 must have a nontrivial normal subgroup, hence cannot be
simple.

Problems

1. Adapt the second proof given of Sylow’s theorem to prove directly
that if p is a prime and p* | o(G), then G has a subgroup of order p*.
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