| | Makeup Exam 1 | |--|------------------------| | | Modern Algebra I. Dave | Modern Algebra I, Dave Bayer, February 17, 2009 Name: | [1] (5 pts) | [2] (5 pts) | [3] (5 pts) | [4] (5 pts) | [5] (5 pts) | [6] (5 pts) | TOTAL | |-------------|-------------|-------------|-------------|-------------|-------------|-------| | | | | | | | | | | | | | | | | Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages. [1] Let C_{10} be the cyclic group of order 10. Using generators and relations, we can write $$C_{10} = \langle \alpha \mid \alpha^{10} = 1 \rangle$$ Working instead additively, we can write $$(\mathbb{Z}/10\mathbb{Z}, +) = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \mod 10$$ List the subgroups of C_{10} , and draw the lattice of subgroups by inclusion. Which subgroups are normal? What are the corresponding quotient groups? (You may use different notation if you prefer.) [2] Let D_4 be the dihedral group of order 8 (the symmetries of the square). Using generators and relations, we can write $$D_4 = \langle a, b \mid a^4 = 1, b^2 = 1, ba = a^{-1}b \rangle$$ where α is a rotation and b is a flip. List the subgroups of D_4 , and draw the lattice of subgroups by inclusion. Which subgroups are normal? What are the corresponding quotient groups? (You may use different notation if you prefer.) [3] Let S_3 be the symmetric group of all permutations of $\{1,2,3\}$, given in cycle notation as $$S_3 = \{ (), (12), (13), (23), (123), (132) \}$$ Let H be the subgroup of S_3 given by $$H = \{(), (12)\}$$ What are the right cosets of H in S_3 ? What are the left cosets of H in S_3 ? Is H normal in S_3 ? If so, what is the quotient group S_3/H ? If not, what are the conjugate subgroups gHg^{-1} of H in S_3 ? (You may use different notation if you prefer.) [4] Let A_4 be the alternating group of even permutations of $\{1,2,3,4\}$, given in cycle notation as $$A_4 = \{ (), (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243) \}$$ Let H be the subgroup of A_4 given by $$H = \{(), (12)(34), (13)(24), (14)(23)\}$$ What are the right cosets of H in A_4 ? What are the left cosets of H in A_4 ? Is H normal in A_4 ? If so, what is the quotient group A_4/H ? If not, what are the conjugate subgroups gHg^{-1} of H in A_4 ? (You may use different notation if you prefer.) [5] Let C_4 be the cyclic group of order 4, and let C_6 be the cyclic group of order 6. Using generators and relations, we can write $$C_4 = \langle a \mid a^4 = 1 \rangle$$ $C_6 = \langle b \mid b^6 = 1 \rangle$ Working instead additively, we can write $$(\mathbb{Z}/4\mathbb{Z}, +) = \{0, 1, 2, 3\} \mod 4$$ $(\mathbb{Z}/6\mathbb{Z}, +) = \{0, 1, 2, 3, 4, 5\} \mod 6$ How many group homomorphisms can you find from C_4 to C_6 ? How many group homomorphisms can you find from C_6 to C_4 ? (You may use different notation if you prefer.) [6] Let D_4 be the dihedral group of order 8 (the symmetries of the square), and let Q be the quaternions $\{\pm 1, \pm i, \pm j, \pm k\}$. Using generators and relations, we can write $$\begin{array}{lll} D_4 & = & < a, b \mid a^4 = 1, \, b^2 = 1, \, ba = a^{-1}b > \\ Q & = & < i, j \mid i^4 = 1, \, j^4 = 1, \, i^2 = j^2, \, ji = i^{-1}j > \end{array}$$ where α is a rotation and b is a flip. (Check that these relations on i and j are equivalent to the usual description of the quaternions.) How many group homomorphisms can you find from D_4 to Q? How many group homomorphisms can you find from Q to D_4 ? (You may use different notation if you prefer.)