
Exam 1

Modern Algebra I, Dave Bayer, February 17, 2009

Name:

[1] (5 pts)	[2] (5 pts)	[3] (5 pts)	[4] (5 pts)	[5] (5 pts)	[6] (5 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.
[1] Let C_{6} be the cyclic group of order 6 . Using generators and relations, we can write

$$
C_{6}=<a \mid a^{6}=1>
$$

Working instead additively, we can write

$$
(\mathbb{Z} / 6 \mathbb{Z},+)=\{0,1,2,3,4,5\} \bmod 6
$$

List the subgroups of C_{6}, and draw the lattice of subgroups by inclusion. Which subgroups are normal? What are the corresponding quotient groups? (You may use different notation if you prefer.)
[2] Let D_{3} be the dihedral group of order 6 (the symmetries of the triangle). Using generators and relations, we can write

$$
\mathrm{D}_{3}=<\mathrm{a}, \mathrm{~b}\left|\mathrm{a}^{3}=1, \mathrm{~b}^{2}=1, \mathrm{ba}=\mathrm{a}^{-1} \mathrm{~b}\right\rangle
$$

where a is a rotation and b is a flip. List the subgroups of D_{3}, and draw the lattice of subgroups by inclusion. Which subgroups are normal? What are the corresponding quotient groups? (You may use different notation if you prefer.)
[3] Let S_{3} be the symmetric group of all permutations of $\{1,2,3\}$, given in cycle notation as

$$
S_{3}=\{(),(12),(13),(23),(123),(132)\}
$$

Let H be the subgroup of S_{3} given by

$$
H=\{(),(123),(132)\}
$$

What are the right cosets of H in S_{3} ? What are the left cosets of H in S_{3} ? Is H normal in S_{3} ? If so, what is the quotient group S_{3} / H ? If not, what are the conjugate subgroups gHg^{-1} of H in S_{3} ? (You may use different notation if you prefer.)
[4] Let A_{4} be the alternating group of even permutations of $\{1,2,3,4\}$, given in cycle notation as

$$
\begin{aligned}
A_{4}=\{ & (),(12)(34),(13)(24),(14)(23), \\
& (123),(132),(124),(142),(134),(143),(234),(243)\}
\end{aligned}
$$

Let H be the subgroup of A_{4} given by

$$
H=\{(),(123),(132)\}
$$

What are the right cosets of H in A_{4} ? What are the left cosets of H in A_{4} ? Is H normal in A_{4} ? If so, what is the quotient group A_{4} / H ? If not, what are the conjugate subgroups gHg^{-1} of H in A_{4} ? (You may use different notation if you prefer.)
[5] Let C_{6} be the cyclic group of order 6 , and let C_{9} be the cyclic group of order 9 . Using generators and relations, we can write

$$
\begin{aligned}
& \mathrm{C}_{6}=<\mathrm{a} \mid \mathrm{a}^{6}=1> \\
& \mathrm{C}_{9}=<\mathrm{b} \mid \mathrm{b}^{9}=1>
\end{aligned}
$$

Working instead additively, we can write

$$
\begin{aligned}
(\mathbb{Z} / 6 \mathbb{Z},+) & =\{0,1,2,3,4,5\} \bmod 6 \\
(\mathbb{Z} / 9 \mathbb{Z},+) & =\{0,1,2,3,4,5,6,7,8\} \bmod 9
\end{aligned}
$$

How many group homomorphisms can you find from C_{6} to C_{9} ? How many group homomorphisms can you find from C_{9} to C_{6} ? (You may use different notation if you prefer.)
[6] Let $C_{2} \times C_{2}$ be the Klein-4 group of order 4 (a product of two cyclic groups of order 2), and let D_{4} be the dihedral group of order 8 (the symmetries of the square). Using generators and relations, we can write

$$
\begin{aligned}
\mathrm{C}_{2} \times \mathrm{C}_{2} & =<\mathrm{a}, \mathrm{~b} \mid \mathrm{a}^{2}=1, \mathrm{~b}^{2}=1, \mathrm{ba}=\mathrm{ab}> \\
\mathrm{D}_{4} & =<\mathrm{c}, \mathrm{~d} \mid \mathrm{c}^{4}=1, \mathrm{~d}^{2}=1, \mathrm{dc}=\mathrm{c}^{-1} \mathrm{~d}>
\end{aligned}
$$

where c is a rotation and d is a flip. How many group homomorphisms can you find from $C_{2} \times C_{2}$ to D_{4} ? How many group homomorphisms can you find from D_{4} to $C_{2} \times C_{2}$? (You may use different notation if you prefer.)

