*' * 3I< Practice Exam 2

Modern Algebra I, Dave Bayer, April 1, 2008

Name: AT\,SLJ%

[1] (6 pts) | [2] (6 pts) |[3] (6 pts) |[4] (6 pts) |[5] (6 pts) | TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a
problem continues on a new page, clearly state this fact on both the old and the new pages.

[1] How many different necklaces can be made from 6 red or blue beads, if we consider rotations to be the
same necklace?
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(2] How many ways can 3 checkers be placed on a 4 by 4 checkerboard, if two arrangements are considered
the same if they differ by a symmetry of the dihedral group D,?
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(3] The Klein four group V is the group of order 4 with elements
{l,a,b,c}
and the multiplication rules
axa=bxb=cxc=1, axb=bxa=c¢, bxc=cxb=a cxa=axc=Db
1. Find two groups of order 10 which have the cyclic group Cs of order 5 as a normal subgroup.

2. Find two groups of order 12 which have the Klein-4 group V of order 4 as a normal subgroup.
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[4] The Quaternion group Q is the group of order 8 with elements
{,—-1,1,—1,j,—j,k, —k}
and the multiplication rules
ixi=j*xj=kxk=—1, ixj=—jxi=k, jrxk=—kx*j=1, k*rsi=—ixk=j

Find a nontrivial normal subgroup N of Q. For your choice of N, what is the quotient group Q/N?
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(5] Let Q be the Quaternion group of order 8, and let H be the cyclic subgroup of order 4 generated by the
element 1.

1. Is H a normal subgroup of Q? Why or why not?

2. Let X be the set of all 4-element subsets of Q. Let Q act on X by conjugation. H is an element of X; what
is the size of its orbit?

3. How many orbits are there, for this action of Q on X?
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