
Practice Exam 2

Modern Algebra I, Dave Bayer, April 1, 2008

Name:

[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.
[1] How many different necklaces can be made from 6 red or blue beads, if we consider rotations to be the same necklace?
[2] How many ways can 3 checkers be placed on a 4 by 4 checkerboard, if two arrangements are considered the same if they differ by a symmetry of the dihedral group D_{4} ?
[3] The Klein four group V is the group of order 4 with elements

$$
\{1, a, b, c\}
$$

and the multiplication rules

$$
\mathrm{a} * \mathrm{a}=\mathrm{b} * \mathrm{~b}=\mathrm{c} * \mathrm{c}=1, \quad \mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}=\mathrm{c}, \quad \mathrm{~b} * \mathrm{c}=\mathrm{c} * \mathrm{~b}=\mathrm{a}, \quad \mathrm{c} * \mathrm{a}=\mathrm{a} * \mathrm{c}=\mathrm{b}
$$

1. Find two groups of order 10 which have the cyclic group C_{5} of order 5 as a normal subgroup.
2. Find two groups of order 12 which have the Klein- 4 group V of order 4 as a normal subgroup.
[4] The Quaternion group Q is the group of order 8 with elements

$$
\{1,-1, \mathfrak{i},-\mathfrak{i}, \mathfrak{j},-\mathfrak{j}, k,-k\}
$$

and the multiplication rules

$$
\mathfrak{i} * \mathfrak{i}=\mathfrak{j} * \mathfrak{j}=k * k=-1, \quad \mathfrak{i} * \mathfrak{j}=-\mathfrak{j} * \mathfrak{i}=k, \quad \mathfrak{j} * k=-k * \mathfrak{j}=\mathfrak{i}, \quad k * \mathfrak{i}=-\mathfrak{i} * k=\mathfrak{j}
$$

Find a nontrivial normal subgroup N of Q. For your choice of N, what is the quotient group Q / N ?
[5] Let Q be the Quaternion group of order 8, and let H be the cyclic subgroup of order 4 generated by the element i.

1. Is H a normal subgroup of Q ? Why or why not?
2. Let X be the set of all 4 -element subsets of Q. Let Q act on X by conjugation. H is an element of X; what is the size of its orbit?
3. How many orbits are there, for this action of Q on X ?
