

Name: \_

| [1] (5 pts) | [2] (5 pts) | [3] (5 pts) | [4] (5 pts) | [5] (5 pts) | [6] (5 pts) | TOTAL |
|-------------|-------------|-------------|-------------|-------------|-------------|-------|
|             |             |             |             |             |             |       |
|             |             |             |             |             |             |       |

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.

[1] Complete each of the following multiplication tables, so that the resulting table is the multiplication rule for a group G. In each case, what group do you get?

|                            | *                          | 1                     | 2 | 3 | 4 |                       |
|----------------------------|----------------------------|-----------------------|---|---|---|-----------------------|
|                            |                            |                       | 2 | 3 | 4 |                       |
|                            | 1<br>2<br>3<br>4           | 1<br>2<br>3<br>4      | 1 |   |   |                       |
|                            | 3                          | 3                     |   | 1 |   |                       |
|                            | 4                          | 4                     |   |   |   |                       |
|                            |                            | I                     |   |   |   |                       |
|                            |                            | 1                     | 2 | 2 | 4 |                       |
|                            | *                          | 1                     | 2 | 3 | 4 |                       |
|                            | 1                          | 1                     | 2 | 3 | 4 |                       |
|                            | 2                          | 2                     | 1 |   |   |                       |
|                            | 1<br>2<br>3<br>4           | 1<br>2<br>3<br>4      |   |   |   |                       |
|                            | 4                          | 4                     |   | 1 |   |                       |
|                            |                            |                       |   |   |   |                       |
| *                          | 1                          | 2                     | 3 | 4 | 5 | 6                     |
| 1                          | 1                          | 2                     | 3 | 4 | 5 | 6                     |
| 2                          | 2                          | 3                     | 1 | 5 |   | 4                     |
| 3                          | 3                          | 2<br>2<br>3<br>1<br>6 | 2 | 6 |   | 5                     |
| 1<br>2<br>3<br>4<br>5<br>6 | 1<br>2<br>3<br>4<br>5<br>6 | 6                     | 5 |   |   | 6<br>4<br>5<br>2<br>3 |
| 5                          | 5                          |                       |   |   |   | 3                     |
| 6                          | 6                          | 5                     | 4 | 3 | 2 |                       |

[2] For each of the groups found in problem 1, let the group act on itself by right multiplication. Use these actions to find permutation representations for each group.

[3] Using the given generators, draw the Cayley graphs for each of the following groups.

- 1.  $G = \langle \{1, i, -1, -i\}, * \rangle \subset \langle \mathbb{C}, * \rangle$ , using the generator i.
- 2.  $G = \langle \mathbb{Z}/6\mathbb{Z}, + \rangle$ , using the generators 2 and 3.
- 3.  $G = S_3$ , using the generators (1 2 3) and (1 2).

[4] Here is a multiplication table for the dihedral group  $D_5$  of order 10:

| *  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|----|
| 1  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| 2  | 2  | 3  | 4  | 5  | 1  | 7  | 8  | 9  | 10 | 6  |
| 3  | 3  | 4  | 5  | 1  | 2  | 8  | 9  | 10 | 6  | 7  |
| 4  | 4  | 5  | 1  | 2  | 3  | 9  | 10 | 6  | 7  | 8  |
| 5  | 5  | 1  | 2  | 3  | 4  | 10 | 6  | 7  | 8  | 9  |
| 6  | 6  | 10 | 9  | 8  | 7  | 1  | 5  | 4  | 3  | 2  |
| 7  | 7  | 6  | 10 | 9  | 8  | 2  | 1  | 5  | 4  | 3  |
| 8  | 8  | 7  | 6  | 10 | 9  | 3  | 2  | 1  | 5  | 4  |
| 9  | 9  | 8  | 7  | 6  | 10 | 4  | 3  | 2  | 1  | 5  |
| 10 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  |

- 1. Find six nontrivial subgroups H of  $D_5$  (not order 1 or 10).
- 2. For two of the H that you found, what are the right cosets of H in G?

[5] Let G be the group  $\langle \mathbb{Z}/3\mathbb{Z}, + \rangle$ , and let H be the group  $\langle \mathbb{Z}/6\mathbb{Z}, + \rangle$ . How many group homomorphisms can you find from G to H? From H to G?

[6] The Klein four group V is the group of order 4 with elements

$$\{1, a, b, c\}$$

and the multiplication rules

a \* a = b \* b = c \* c = 1, a \* b = b \* a = c, b \* c = c \* b = a, c \* a = a \* c = b

The Quaternion group Q is the group of order 8 with elements

$$\{1, -1, i, -i, j, -j, k, -k\}$$

and the multiplication rules

i \* i = j \* j = k \* k = -1, i \* j = -j \* i = k, j \* k = -k \* j = i, k \* i = -i \* k = j

How many group homomorphisms can you find from V to Q? From Q to V?