
Exam 1

Modern Algebra I, Dave Bayer, February 19, 2008

Name:

$[1](5 \mathrm{pts})$	$[2](5 \mathrm{pts})$	$[3]$ (5 pts)	$[4]$ (5 pts)	$[5]$ (5 pts)	$[6]$ (5 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.
[1] Complete each of the following multiplication tables, so that the resulting table is the multiplication rule for a group G. In each case, what group do you get?

	*	1	2	3	4	
	1	1	2	3	4	
	2	2	1			
	3	3		1		
	4	4				
	*	1	2	3	4	
	1	1	2	3	4	
	2	2	1			
	3	3				
	4	4		1		
*	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	3	1	5		4
3	3	1	2	6		5
4	4	6	5			2
5	5					3
6	6	5	4	3	2	

[2] For each of the groups found in problem 1, let the group act on itself by right multiplication. Use these actions to find permutation representations for each group.
[3] Using the given generators, draw the Cayley graphs for each of the following groups.

1. $G=\langle\{1, \mathfrak{i},-1,-\mathfrak{i}\}, *\rangle \subset\langle\mathbb{C}, *\rangle$, using the generator \mathfrak{i}.
2. $G=\langle\mathbb{Z} / 6 \mathbb{Z},+\rangle$, using the generators 2 and 3 .
3. $G=S_{3}$, using the generators ($\begin{array}{ll}1 & 2\end{array} 3$) and (12).
[4] Here is a multiplication table for the dihedral group D_{5} of order 10:

$*$	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	1	7	8	9	10	6
3	3	4	5	1	2	8	9	10	6	7
4	4	5	1	2	3	9	10	6	7	8
5	5	1	2	3	4	10	6	7	8	9
6	6	10	9	8	7	1	5	4	3	2
7	7	6	10	9	8	2	1	5	4	3
8	8	7	6	10	9	3	2	1	5	4
9	9	8	7	6	10	4	3	2	1	5
10	10	9	8	7	6	5	4	3	2	1

1. Find six nontrivial subgroups H of D_{5} (not order 1 or 10).
2. For two of the H that you found, what are the right cosets of H in G ?
[5] Let G be the group $\langle\mathbb{Z} / 3 \mathbb{Z},+\rangle$, and let H be the group $\langle\mathbb{Z} / 6 \mathbb{Z},+\rangle$. How many group homomorphisms can you find from G to H ? From H to G ?
[6] The Klein four group V is the group of order 4 with elements

$$
\{1, a, b, c\}
$$

and the multiplication rules

$$
\mathrm{a} * \mathrm{a}=\mathrm{b} * \mathrm{~b}=\mathrm{c} * \mathrm{c}=1, \quad \mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}=\mathrm{c}, \quad \mathrm{~b} * \mathrm{c}=\mathrm{c} * \mathrm{~b}=\mathrm{a}, \quad \mathrm{c} * \mathrm{a}=\mathrm{a} * \mathrm{c}=\mathrm{b}
$$

The Quaternion group Q is the group of order 8 with elements

$$
\{1,-1, i,-i, j,-j, k,-k\}
$$

and the multiplication rules

$$
\mathfrak{i} * \mathfrak{i}=\mathfrak{j} * \mathfrak{j}=k * k=-1, \quad \mathfrak{i} * \mathfrak{j}=-\mathfrak{j} * \mathfrak{i}=k, \quad \mathfrak{j} * k=-k * \mathfrak{j}=\mathfrak{i}, \quad k * \mathfrak{i}=-\mathfrak{i} * k=\mathfrak{j}
$$

How many group homomorphisms can you find from V to Q ? From Q to V ?

