

Name: _____

[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided, and identify all continuations clearly.

[1] Let A be the matrix

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & -1 & 2 & 0 \\ -1 & 0 & -1 & -1 & -1 & 0 \\ 0 & -1 & -1 & 1 & -2 & 1 \end{bmatrix}.$$

Compute the row space and column space of A.

[**2**] Let

$$\mathbf{v}_1 = (1, 1, 0, 0), \ \mathbf{v}_2 = (1, 0, 1, 0), \ \mathbf{v}_3 = (1, 0, 0, -1), \ \mathbf{v}_4 = (0, 1, -1, 0), \ \mathbf{v}_5 = (0, 1, 0, 1).$$

Find a basis for the subspace $V \subset \mathbb{R}^4$ spanned by \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 , and \mathbf{v}_5 . Extend this basis to a basis for \mathbb{R}^4 .

[3] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Find a basis for the subspace W defined by

$$f(-1) = f(0), \quad f(-1) = f(1), \quad f(0) = f(1).$$

Extend this basis to a basis for V.

[4] Let $\mathbf{v}_1 = (1, -1)$ and $\mathbf{v}_2 = (1, 1)$. Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that

$$L(\mathbf{v}_1) = 3\mathbf{v}_1 - \mathbf{v}_2, \quad L(\mathbf{v}_2) = 3\mathbf{v}_2 - \mathbf{v}_1.$$

Find a matrix that represents L with respect to the usual basis $\mathbf{e}_1 = (1,0), \mathbf{e}_2 = (0,1).$

[5] Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation such that $L(\mathbf{v}) = -\mathbf{v}$ for all \mathbf{v} belonging to the subspace $V \subset \mathbb{R}^3$ defined by x + y + z = 0, and $L(\mathbf{v}) = \mathbf{v}$ for all \mathbf{v} belonging to the subspace $W \subset \mathbb{R}^3$ defined by x = y = 0. Find a matrix that represents L with respect to the usual basis

$$\mathbf{e}_1 = (1, 0, 0), \quad \mathbf{e}_2 = (0, 1, 0), \quad \mathbf{e}_3 = (0, 0, 1).$$

Problem: _____