
Second Midterm

Linear Algebra, Dave Bayer, March 30, 2004

Name:

$[\mathbf{1}](6 \mathrm{pts})$	$[\mathbf{2}](6 \mathrm{pts})$	$[\mathbf{3}](6 \mathrm{pts})$	$[\mathbf{4}](6 \mathrm{pts})$	$[\mathbf{5}](6 \mathrm{pts})$	TOTAL

Please work only one problem per page, starting with the pages provided, and identify all continuations clearly.
[1] Let A be the matrix

$$
A=\left[\begin{array}{rrrrrr}
1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & -1 & 2 & 0 \\
-1 & 0 & -1 & -1 & -1 & 0 \\
0 & -1 & -1 & 1 & -2 & 1
\end{array}\right]
$$

Compute the row space and column space of A.
[2] Let

$$
\mathbf{v}_{1}=(1,1,0,0), \mathbf{v}_{2}=(1,0,1,0), \mathbf{v}_{3}=(1,0,0,-1), \mathbf{v}_{4}=(0,1,-1,0), \mathbf{v}_{5}=(0,1,0,1)
$$

Find a basis for the subspace $V \subset \mathbb{R}^{4}$ spanned by $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$, and \mathbf{v}_{5}. Extend this basis to a basis for \mathbb{R}^{4}.
[3] Let V be the vector space of all polynomials $f(x)$ of degree ≤ 3. Find a basis for the subspace W defined by

$$
f(-1)=f(0), \quad f(-1)=f(1), \quad f(0)=f(1) .
$$

Extend this basis to a basis for V.
[4] Let $\mathbf{v}_{1}=(1,-1)$ and $\mathbf{v}_{2}=(1,1)$. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation such that

$$
L\left(\mathbf{v}_{1}\right)=3 \mathbf{v}_{1}-\mathbf{v}_{2}, \quad L\left(\mathbf{v}_{2}\right)=3 \mathbf{v}_{2}-\mathbf{v}_{1}
$$

Find a matrix that represents L with respect to the usual basis $\mathbf{e}_{1}=(1,0), \mathbf{e}_{2}=(0,1)$.
[5] Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation such that $L(\mathbf{v})=-\mathbf{v}$ for all \mathbf{v} belonging to the subspace $V \subset \mathbb{R}^{3}$ defined by $x+y+z=0$, and $L(\mathbf{v})=\mathbf{v}$ for all \mathbf{v} belonging to the subspace $W \subset \mathbb{R}^{3}$ defined by $x=y=0$. Find a matrix that represents L with respect to the usual basis

$$
\mathbf{e}_{1}=(1,0,0), \quad \mathbf{e}_{2}=(0,1,0), \quad \mathbf{e}_{3}=(0,0,1)
$$

Problem:

