Exam 2

Linear Algebra, Dave Bayer, April 3, 2003

Name: _____

[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided, and identify all continuations clearly.

[1] Let A be the matrix

$$A = \begin{bmatrix} 1 & -1 & 2 & -3 & 5 & -7 \\ -1 & 2 & -3 & 5 & -7 & 12 \\ 2 & -3 & 5 & -7 & 12 & -19 \end{bmatrix}.$$

Compute the row space and column space of A.

$$\mathbf{v}_1 = (1, 2, -3, -4), \quad \mathbf{v}_2 = (1, -2, 3, -4), \quad \mathbf{v}_3 = (0, 2, -3, 0), \quad \mathbf{v}_4 = (1, -2, -3, 4).$$

Find a basis for the subspace $V \subset \mathbb{R}^4$ spanned by \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4 . Extend this basis to a basis for \mathbb{R}^4 .

[3] Let V be the vector subspace W defined by	space of all polyno $f(0) = f(1) = f(2)$	omials $f(x)$ of degree. Extend this basis	ree ≤ 3 . Find a basis for V .	asis for the

[4] Let $\mathbf{v}_1 = (1,1)$ and $\mathbf{v}_2 = (1,2)$. Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that

$$L(\mathbf{v}_1) = \mathbf{v}_1 + \mathbf{v}_2, \quad L(\mathbf{v}_2) = \mathbf{v}_1 - \mathbf{v}_2.$$

Find a matrix that represents L with respect to the usual basis $\mathbf{e}_1 = (1,0), \, \mathbf{e}_2 = (0,1).$

[5] Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation such that $L(\mathbf{v}) = \mathbf{v}$ for all \mathbf{v} belonging to the subspace $V \subset \mathbb{R}^3$ defined by x + y = 2z, and $L(\mathbf{v}) = 2\mathbf{v}$ for all \mathbf{v} belonging to the subspace $W \subset \mathbb{R}^3$ defined by x = y = 2z. Find a matrix that represents L with respect to the usual basis

$$\mathbf{e}_1 = (1, 0, 0), \quad \mathbf{e}_2 = (0, 1, 0), \quad \mathbf{e}_3 = (0, 0, 1).$$

Problem:	
----------	--