Practice Exam 1

[1] Solve the following system of equations:

$$
\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
6
\end{array}\right]
$$

[2] Compute a matrix giving the number of walks of length 4 between pairs of vertices of the following graph:

[3] Express the following matrix as a product of elementary matrices:

$$
\left[\begin{array}{llll}
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0
\end{array}\right]
$$

[4] Compute the determinant of the following 4×4 matrix:

$$
\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
1 & \lambda & 1 & 0 \\
0 & 1 & \lambda & 1 \\
0 & 0 & 1 & \lambda
\end{array}\right]
$$

What can you say about the determinant of the $n \times n$ matrix with the same pattern?
[5] Use Cramer's rule to give a formula for w in the solution to the following system of equations:

$$
\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

Exam 1

[1] Solve the following system of equations:

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

[2] Compute matrices giving the number of walks of lengths 1,2 , and 3 between pairs of vertices of the following graph:

[3] Express the following matrix as a product of elementary matrices:

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

[4] Compute the determinant of the following 4×4 matrix:

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
2 & 2 & 0 & 2 \\
3 & 0 & 3 & 3 \\
0 & 4 & 4 & 4
\end{array}\right]
$$

What can you say about the determinant of the $n \times n$ matrix with the same pattern?
[5] Use Cramer's rule to give a formula for the solution to the following system of equations:

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 a \\
2 b \\
2 c
\end{array}\right]
$$

