Final Exam

Linear Algebra, Dave Bayer, May 13, 2003

Name: _____

[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided, and identify all continuations clearly.

[1] Find an orthogonal basis for the subspace V of \mathbb{R}^6 consisting of all vectors (a, b, c, d, e, f) such that a = b, c = d, and e = f.

answer:

[2] Find an orthogonal basis for the subspace V of \mathbb{R}^4 spanned by the vectors (2, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 2).

answer:

[3] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, 0), (x_2, y_2) = (1, 2), (x_3, y_3) = (2, 1), (x_4, y_4) = (3, 0).$

answer:

[4] Find (s,t) so	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$	is as close as possible to	$\begin{bmatrix} 1\\1\\3\\3 \end{bmatrix}.$
---------------------	---	----------------------------	---

answer:

[5] Let $A = \begin{bmatrix} 0 & 1 & -1 \\ 0 & -1 & 0 \\ 1 & 1 & -2 \end{bmatrix}$. Find the eigenvalues and eigenvectors of A.

answer:

[6] Let
$$A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
. Find the matrix exponential e^{At} .

answer:

[7] Let
$$A = \begin{bmatrix} 0 & 1 & -1 \\ -2 & 3 & -1 \\ -2 & 2 & 0 \end{bmatrix}$$
. Find the matrix exponential e^{At} .

answer: