Final Exam

Linear Algebra, Dave Bayer, May 13, 2003

Name:

$[\mathbf{1}](5 \mathrm{pts})$	$[\mathbf{2}](5 \mathrm{pts})$	$[\mathbf{3}](6 \mathrm{pts})$	$[\mathbf{4}](6 \mathrm{pts})$	$[\mathbf{5}](6 \mathrm{pts})$	$[\mathbf{6}](6 \mathrm{pts})$	$[\mathbf{7}](6 \mathrm{pts})$	TOTAL

Please work only one problem per page, starting with the pages provided, and identify all continuations clearly.
[1] Find an orthogonal basis for the subspace V of \mathbb{R}^{6} consisting of all vectors (a, b, c, d, e, f) such that $a=b, c=d$, and $e=f$.
answer:
work:
\qquad
[2] Find an orthogonal basis for the subspace V of \mathbb{R}^{4} spanned by the vectors $(2,1,0,0)$, $(0,1,1,0),(0,0,1,2)$.
answer:
work:
[3] By least squares, find the equation of the form $y=a x+b$ which best fits the data $\left(x_{1}, y_{1}\right)=(0,0),\left(x_{2}, y_{2}\right)=(1,2),\left(x_{3}, y_{3}\right)=(2,1),\left(x_{4}, y_{4}\right)=(3,0)$.
answer:
work:
[4] Find (s, t) so $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 2 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{c}s \\ t\end{array}\right]$ is as close as possible to $\left[\begin{array}{l}1 \\ 1 \\ 3 \\ 3\end{array}\right]$.
answer:
work:
[5] Let $A=\left[\begin{array}{rrr}0 & 1 & -1 \\ 0 & -1 & 0 \\ 1 & 1 & -2\end{array}\right]$. Find the eigenvalues and eigenvectors of A.
answer:
work:
[6] Let $A=\left[\begin{array}{rr}3 & -1 \\ -1 & 3\end{array}\right]$. Find the matrix exponential $e^{A t}$.
answer:
work:
[7] Let $A=\left[\begin{array}{rrr}0 & 1 & -1 \\ -2 & 3 & -1 \\ -2 & 2 & 0\end{array}\right]$. Find the matrix exponential $e^{A t}$.
answer:
work:

