Final Exam

Linear Algebra, Dave Bayer, May 8, 2001

Name: ______ ID: ______ School: _____

[1] (5 pts)	[2] (5 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	[6] (6 pts)	[7] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided, and identify all continuations clearly.

[1] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Let $W \subset V$ be the subpace of all *odd* polynomials f in V, i.e. those polynomials f(x) in V which satisfy f(-x) = -f(x). Find a basis for W. Extend this basis to a basis for V.

answer:

[2] Find the determinants of the matrices

$$A_{3} = \begin{bmatrix} \lambda & 0 & -1 \\ 0 & \lambda - 1 & 0 \\ -1 & 0 & \lambda \end{bmatrix}, \quad A_{4} = \begin{bmatrix} \lambda & 0 & 0 & -1 \\ 0 & \lambda & -1 & 0 \\ 0 & -1 & \lambda & 0 \\ -1 & 0 & 0 & \lambda \end{bmatrix}.$$

What is the determinant of the $n \times n$ matrix A_n with the same pattern?

answer:

[3] Find an orthogonal basis for the subspace w - x + y - z = 0 of \mathbb{R}^4 .

answer:

[4] By least squares, find the equation of the form y = ax + b which best fits the data $(x_1, y_1) = (0, 0), (x_2, y_2) = (1, 2), (x_3, y_3) = (2, 1).$

answer:

[5] Find (s,t) so	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$ is as close as possible to	$\begin{bmatrix} 1\\1\\1 \end{bmatrix}.$
------------------------------	---	--

answer:

[6] Let
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. Find the eigenvalues and eigenvectors of A .

answer:

[7] Let
$$A = \begin{bmatrix} 9 & -2 \\ -2 & 6 \end{bmatrix}$$
. Find the matrix exponential e^{At} .

answer: