Final Exam

Name: \qquad
ID: \qquad

School:

\qquad

| $[\mathbf{1}](5 \mathrm{pts})$ | $[\mathbf{2}](5 \mathrm{pts})$ | $[\mathbf{3}](6 \mathrm{pts})$ | $[\mathbf{4}](6 \mathrm{pts})$ | $[\mathbf{5}](6 \mathrm{pts})$ | $[\mathbf{6}](6 \mathrm{pts})$ | $[\mathbf{7}](6 \mathrm{pts})$ | TOTAL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |
| | | | | | | | |

Please work only one problem per page, starting with the pages provided, and identify all continuations clearly.
[1] Let V be the vector space of all polynomials $f(x)$ of degree ≤ 3. Let $W \subset V$ be the subpace of all odd polynomials f in V, i.e. those polynomials $f(x)$ in V which satisfy $f(-x)=-f(x)$. Find a basis for W. Extend this basis to a basis for V.
answer:
work:
\qquad
[2] Find the determinants of the matrices

$$
A_{3}=\left[\begin{array}{rrr}
\lambda & 0 & -1 \\
0 & \lambda-1 & 0 \\
-1 & 0 & \lambda
\end{array}\right], \quad A_{4}=\left[\begin{array}{rrrr}
\lambda & 0 & 0 & -1 \\
0 & \lambda & -1 & 0 \\
0 & -1 & \lambda & 0 \\
-1 & 0 & 0 & \lambda
\end{array}\right] .
$$

What is the determinant of the $n \times n$ matrix A_{n} with the same pattern? answer:
work:
[3] Find an orthogonal basis for the subspace $w-x+y-z=0$ of \mathbb{R}^{4}. answer:
work:
[4] By least squares, find the equation of the form $y=a x+b$ which best fits the data $\left(x_{1}, y_{1}\right)=(0,0),\left(x_{2}, y_{2}\right)=(1,2),\left(x_{3}, y_{3}\right)=(2,1)$.
answer:
work:
[5] Find (s, t) so $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{c}s \\ t\end{array}\right]$ is as close as possible to $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
answer:
work:
[6] Let $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. Find the eigenvalues and eigenvectors of A.
answer:
work:
[7] Let $A=\left[\begin{array}{rr}9 & -2 \\ -2 & 6\end{array}\right]$. Find the matrix exponential $e^{A t}$. answer:
work:

