First Exam AA

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam AB

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam AC

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam AD

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam AE

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam AF

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam AG

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam AH

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam AI

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam AJ

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam AK

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam AL

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam AM

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam AN

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BA

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BB

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BC

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BD

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BE

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BF

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BG

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BH

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BI

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BJ

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BK

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BL

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BM

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam BN

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CA

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CB

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CC

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CD

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CE

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CF

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CG

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CH

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CI

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CJ

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CK

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CL

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CM

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam CN

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DA

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DB

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DC

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DD

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DE

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DF

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DG

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DH

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DI

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DJ

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DK

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DL

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DM

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam DN

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam EA

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam EB

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam EC

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam ED

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam EE

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam EF

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam EG

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam EH

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam EI

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam EJ

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam EK

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam EL

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam EM

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam EN

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FA

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FB

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FC

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FD

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FE

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FF

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FG

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FH

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FI

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FJ

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FK

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FL

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FM

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam FN

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GA

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GB

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GC

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GD

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GE

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GF

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GG

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GH

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GI

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GJ

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GK

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GL

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GM

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam GN

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HA

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HB

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HC

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HD

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HE

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HF

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HG

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HH

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HI

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HJ

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HK

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HL

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HM

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam HN

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam IA

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam IB

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam IC

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam ID

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam IE

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam IF

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam IG

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam IH

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam II

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam IJ

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam IK

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam IL

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam IM

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam IN

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JA

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JB

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JC

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JD

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JE

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JF

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JG

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JH

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JI

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JJ

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JK

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JL

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JM

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam JN

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KA

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KB

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KC

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KD

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KE

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KF

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KG

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KH

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KI

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KJ

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KK

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KL

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KM

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam KN

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LA

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LB

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LC

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LD

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LE

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LF

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LG

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LH

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LI

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LJ

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LK

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LL

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LM

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam LN

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam MA

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam MB

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam MC

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam MD

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam ME

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam MF

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam MG

Surfaces and Knots, Dave Bayer, February 21, 2002
Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam MH

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam MI

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam MJ

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam MK

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

First Exam ML

Surfaces and Knots, Dave Bayer, February 21, 2002

Name: \qquad School: \qquad

$[\mathbf{1}]$	$[2]$	$[3]$	$[4]$	$[5]$	TOTAL

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

