Calculus IIIA practice exam for mid-term 1 Instructor: Chia-Fu Yu

September 26, 2000

There are 8 problems in this practice exam. They will help you drill your skills about the materials. The actual exam will consist of problems fewer than this one.

- 1. Find dy/dx and d^2y/dx^2 for the curve $x = 1 + t^2$, $y = t \ln t$.
- 2. Find the equation of the tangent line of the curve

$$x = \ln t, \ y = e^{-t}, \ t > 0$$

at the point $(0, e^{-1})$.

3. Find the area bounded by the curve

$$x = t - \frac{1}{t}, \ y = t + \frac{1}{t}$$

and the line y = 2.5.

4. Find the surface area generated by rotating the curve

$$x = e^t - t, \ y = 4e^{t/2}, \ 2 \le t \le 4$$

about x-axis.

5. Find the area of one loop of the curve

$$r = \cos 4\theta$$

in polar coordinates.

6. Find the arc length of the curve

$$r = e^{-\theta}, \ \theta \ge 0$$

in polar coordinates.

	-			. 0				· -			
• •		\sim .	· ~ ~	+9 I		$\sim_{\mathcal{G}}$	-	\sim \sim \sim			.
			••		~ ·		• • •		• •		• • •
								J I-	,		
			T 0	• · •	• •	. •	~	• • •	•• ••	~	• • •
				· · · ·		·,					
		•									
	0- ~ r										

8. Find the area inside both curves

$$r = \sin 2\theta, \ r = \sin \theta$$

in polar coordinates.