Calculus IIA
Sample Midterm 1
February 16, 2000
Professor Henry Pinkham

1. (10 pts) Write down the formula for the arc length of a curve $y=f(x)$ between $x=a$ and $x=b$. Compute the arc length of $y=\sqrt{9-x^{2}}$, $-3 \leq x \leq 3$.
2. (10 pts) Write down the formula for the surface area of the surface obtained by rotating the curve $y=f(x)$ between $x=a$ and $x=b$. You may assume $f(x)$ is positive on the interval. Compute the surface area for the same example as in problem 1).
3. (10 pts) Evaluate the following two definite integrals:
a) $\int_{0}^{4} \frac{1}{\sqrt{x^{2}+9}} d x$
b) $\int_{0}^{4} \frac{x}{\sqrt{x^{2}+9}} d x$
4. (10 pts) Evaluate the following two definite integrals:
a) $\int_{0}^{\pi} \sin ^{2} \theta d \theta$
b) $\int_{0}^{\pi} \cos ^{3} \theta d \theta$
5. (10 pts each part) Evaluate the following definite integrals:
a) $\int_{0}^{1} x e^{x} d x$
b) $\int_{0}^{1} \arctan x d x$
c) $\int_{0}^{1} \frac{t^{3} d t}{(t+1)\left(t^{2}+1\right)}$
d) $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+9}$
e) $\int_{0}^{1} \frac{2 d x}{\sqrt{x}}$
6. (10 pts) Does the integral $\int_{1}^{\infty} \frac{\sin x}{\sqrt{x^{3}+2}} d x$ converge or diverge? Justify your answer.
