Exam 2
Linear Algebra, Dave Bayer, March 6, 2014

Name: ___ Uni: ____________

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.

[1] Find the row space and the column space of the matrix

\[
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 \\
0 & 2 & 4 & 6 & 8 \\
0 & 3 & 6 & 9 & 2 \\
0 & 4 & 8 & 2 & 6
\end{bmatrix}
\]
[2] By least squares, find the equation of the form \(y = ax + b \) that best fits the data

\[
\begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 x_3 & y_3 \\
 x_4 & y_4 \\
\end{bmatrix} = \begin{bmatrix}
 0 & 1 \\
 1 & 2 \\
 2 & 1 \\
 3 & 1 \\
\end{bmatrix}
\]
[3] Find the 3×3 matrix that projects orthogonally onto the plane

$$x + 3y - 2z = 0$$
[4] Find an orthogonal basis for the subspace V of \mathbb{R}^4 spanned by the vectors

$$\begin{align*}
(1, 1, 0, 0) & \quad (0, 1, 1, 0) & \quad (0, 0, 1, 1) & \quad (1, 2, 1, 0) & \quad (0, 1, 2, 1)
\end{align*}$$

Extend this basis to an orthogonal basis for \mathbb{R}^4.
[5] Let V be the vector space of all polynomials of degree ≤ 2 in the variable x with coefficients in \mathbb{R}. Let W be the subspace of polynomials of degree ≤ 1. Find the orthogonal projection of the polynomial x^2 onto the subspace W, with respect to the inner product

$$\langle f, g \rangle = \int_{0}^{1} f(x)g(x) \, dx$$