[6] Let A be the matrix

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}.$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^A .

2001-05-08 Final

[7] Let $A = \begin{bmatrix} 9 & -2 \\ -2 & 6 \end{bmatrix}$. Find the matrix exponential e^{At} .

answer:

[6] Let $A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$. Find the matrix exponential e^{At} .

answer:

[7] Let
$$A = \begin{bmatrix} 0 & 1 & -1 \\ -2 & 3 & -1 \\ -2 & 2 & 0 \end{bmatrix}$$
. Find the matrix exponential e^{At} .

[6] Let $A = \begin{bmatrix} -2 & 1 \\ -1 & 0 \end{bmatrix}$. Find the matrix exponential e^{At} .

answer:

[7] Let
$$A = \begin{bmatrix} 2 & 1 & -1 \\ -1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
. Find the matrix exponential e^{At} .

[6] Let
$$A = \begin{bmatrix} 3 & 4 \\ 1 & 3 \end{bmatrix}$$
. Find the matrix exponential e^{At} .

[7] Let
$$A = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 6 & -3 & 2 \end{bmatrix}$$
. Find the matrix exponential e^{At} .

Final Exam Linear Algebra, Dave Bayer, December 21, 2006

Name: _

[1] (5 pts)	[2] (5 pts)	[3] (5 pts)	[4] (5 pts)	[5] (5 pts)	TOTAL

Please work only one problem per page, starting with the pages provided, and identify all continuations clearly.

[1] Let
$$A = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$$
. Write A as CDC^{-1} for a diagonal matrix D. Find the matrix e^{At} .

answer:

[2] Let $A = \begin{bmatrix} -3 & -2 \\ 6 & 4 \end{bmatrix}$. Write A as CDC^{-1} for a diagonal matrix D. Find the matrix e^{At} .

answer:

[3] Let
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 1 & -1 \\ 2 & 2 & 1 \end{bmatrix}$$
. Write A as CDC^{-1} for a diagonal matrix D . Find the matrix e^{At} .

[4] Let
$$A = \begin{bmatrix} 8 & -1 \\ 1 & 6 \end{bmatrix}$$
. Find the matrix e^{At} .

[5] Let
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
. Find the matrix e^{At} .

[2] Find e^{At} for the matrix

$$A = \begin{bmatrix} -1 & -2 \\ 4 & 5 \end{bmatrix}$$

[3] Find e^{At} for the matrix

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

2007-05-10 Final

[4] Find the matrix
$$e^{At}$$
, where $A = \begin{bmatrix} 2 & 2 & -2 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$.

[4] Find e^{At} for the matrix

$$A = \begin{bmatrix} 4 & -4 \\ 1 & 8 \end{bmatrix}$$

[5] Find e^{At} for the matrix

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

[6] Find e^{At} for the matrix

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

[8] Find e^{At} for the matrix

$$A = \begin{bmatrix} 4 & 2 & 1 \\ -2 & -1 & -1 \\ -8 & -4 & -1 \end{bmatrix}$$

[6] Find the matrix exponential e^{At} , for the matrix

$$\mathsf{A} = \begin{bmatrix} 4 & 1 \\ 4 & 1 \end{bmatrix}$$

[7] Find the matrix exponential e^{At} , for the matrix

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}$$

[3] Find e^{At} where A is the matrix

$$\begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$$

[4] Find e^{At} where A is the matrix

$$\begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$$

[7] Find e^{At} where A is the matrix

$$\begin{bmatrix} 1 & -4 & 2 \\ 0 & 2 & 0 \\ 0 & -2 & 3 \end{bmatrix}$$

[8] Find e^{At} where A is the matrix

$$\begin{bmatrix} 1 & 1 & 0 \\ -2 & 4 & 1 \\ 2 & -2 & 0 \end{bmatrix}$$

[3] Find e^{At} where A is the matrix

$$\begin{bmatrix} -1 & -1 \\ 3 & 3 \end{bmatrix}$$

[4] Find e^{At} where A is the matrix

$$\begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$$

[7] Find e^{At} where A is the matrix

$$\begin{bmatrix} 4 & -2 & 1 \\ -2 & 4 & -2 \\ -6 & 6 & -3 \end{bmatrix}$$

[8] Find e^{At} where A is the matrix

$$\begin{bmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

[3] Find e^{At} where A is the matrix

$$\begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix}$$

[4] Find e^{At} where A is the matrix

$$\left[\begin{array}{rr} -1 & 1 \\ 2 & -2 \end{array}\right]$$

[7] Find e^{At} where A is the matrix

$$\begin{bmatrix} -2 & 2 & -2 \\ -4 & 4 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

[8] Find e^{At} where A is the matrix

$$\begin{bmatrix} 0 & 1 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & 3 \end{bmatrix}$$

[3] Find e^{At} where A is the matrix

$$\begin{bmatrix} -1 & -2 \\ 2 & 4 \end{bmatrix}$$

[4] Find e^{At} where A is the matrix

$$\left[\begin{array}{rrr} -3 & -1 \\ 4 & 1 \end{array}\right]$$

[7] Find e^{At} where A is the matrix

$$\begin{bmatrix} 4 & -3 & -1 \\ 3 & -2 & -1 \\ 2 & -2 & 0 \end{bmatrix}$$

[8] Find e^{At} where A is the matrix

$$\begin{bmatrix} -3 & 4 & -2 \\ -3 & 4 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$

[3] Find e^{At} where A is the matrix

$$\left[\begin{array}{rrr} 2 & -1 \\ 4 & 6 \end{array}\right]$$

[4] Find e^{At} where A is the matrix

$$\left[\begin{array}{rrr} -1 & 1 \\ 3 & -3 \end{array}\right]$$

[7] Find e^{At} where A is the matrix

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & -1 & -2 \\ 0 & 0 & 2 \end{bmatrix}$$

[8] Find e^{At} where A is the matrix

$$\begin{bmatrix} 0 & 4 & -4 \\ 2 & -2 & 1 \\ 3 & -6 & 5 \end{bmatrix}$$

[3] Find e^{At} where A is the matrix

$$\begin{bmatrix} -2 & 2 \\ 3 & -3 \end{bmatrix}$$

[4] Find e^{At} where A is the matrix

$$\begin{bmatrix} 4 & -1 \\ 1 & 6 \end{bmatrix}$$

[7] Find e^{At} where A is the matrix

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 6 & -8 \\ 0 & 4 & -6 \end{bmatrix}$$

[8] Find e^{At} where A is the matrix

$$\begin{bmatrix} 3 & -4 & 2 \\ 4 & -5 & 3 \\ 4 & -4 & 3 \end{bmatrix}$$

[8] Find a matrix A so the substitution

$$\left[\begin{array}{c} x\\ y \end{array}\right] = A \left[\begin{array}{c} s\\ t \end{array}\right]$$

transforms the quadratic form $x^2 + 4xy + y^2$ into the quadratic form $s^2 - t^2$.

[5] The quadratic form

$$2xy = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{2} \left((x+y)^2 - (x-y)^2 \right)$$

can be expressed as shown as a linear combination of squares of linear forms. Do the same for the quadratic form

$$x^2 + 2xy + 2yz + z^2$$

[6] Express the following quadratic form as a linear combination of squares of orthogonal linear forms:

 $3x^2 + 4xy + 6y^2$

[7] Express the following quadratic form as a linear combination of squares of orthogonal linear forms:

 $2xy + 4xz + 4yz + 3z^2$

[5] Express $x^2 + 6xy + y^2$ as a linear combination of squares of orthogonal linear forms.

[5] Express $-3x^2 + 8xy + 3y^2$ as a linear combination of squares of orthogonal linear forms.

[5] Express $-x^2 + 6xy - y^2$ as a linear combination of squares of orthogonal linear forms.

[5] Express $-8x^2 + 12xy + 8y^2$ as a linear combination of squares of orthogonal linear forms.

[5] Express $9x^2 + 4xy + 6y^2$ as a linear combination of squares of orthogonal linear forms.

[5] Express $2x^2 - 8xy + 2y^2$ as a linear combination of squares of orthogonal linear forms.

[6] Convert the differential equation y'' - 3y' + 2y = 0 to matrix form, and solve by exponentiating.

[6] Convert the differential equation y'' - 5y' + 6y = 0 to matrix form, and solve by exponentiating.

[6] Convert the differential equation y'' - 2y' + y = 0 to matrix form, and solve by exponentiating.

[6] Convert the differential equation y'' - 2y' - 3y = 0 to matrix form, and solve by exponentiating.

[6] Convert the differential equation y'' - 4y' + 3y = 0 to matrix form, and solve by exponentiating.

[6] Convert the differential equation y'' - 4y' + 4y = 0 to matrix form, and solve by exponentiating.