Exam 2

Linear Algebra, Dave Bayer, Alternate, March 12, 2013

Name: ______ Uni: _____

	[1]	[2]	[3]	[4]	[5]	Total
L						7,0

If you need more that one page for a problem, clearly indicate on each page where to look next for your work.

[1] Find a basis for the set of solutions to the system of equations

$$\begin{bmatrix}
1 & 1 & 2 & 2 \\
2 & 2 & 2 & 2 \\
3 & 3 & 2 & 2
\end{bmatrix}
\begin{bmatrix}
w \\
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$$

Extend this basis to a basis for \mathbb{R}^4 .

$$(1,-1,0,0)$$
 } basis for solus
 $(0,0,1,-1)$ } extend to IR4
 $(0,0,0,1)$ } extend to IR4

[2] By least squares, find the equation of the form y = ax + b which best fits the data

$$(x_1,y_1)=(-1,0), (x_2,y_2)=(0,0), (x_3,y_3)=(1,2)$$

$$\begin{cases} x & 1 \\ -1 & 1 \\ 0 & 1 \\ 1 & 1 \end{cases} \begin{bmatrix} 9 \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 9 \\ 6 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 9 \\ 0 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \qquad \begin{array}{c} q = 1 \\ b = \frac{2}{3} \end{array} \qquad \boxed{| y = x + \frac{2}{3}}$$

check:

[3] Let L be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 which reflects first across the line y = x, then across the line y = 3x. Find the matrix A which represents L in standard coordinates.

B reflects across
$$y=X$$
 $B = \begin{bmatrix} 0 \\ 10 \end{bmatrix}$
C reflects across $y=3x$
 $C \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $C \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$
 $C = \begin{bmatrix} 1 - 3 \\ 3 - 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} +1 + 3 \\ 3 & 1 \end{bmatrix}_{10}$
 $= \begin{bmatrix} -8 & 6 \\ 6 & 8 \end{bmatrix}_{10} = \begin{bmatrix} -4 & 3 \\ 3 & 4 \end{bmatrix}_{5}$
Check: $\begin{bmatrix} -4 & 3 \\ 3 & 4 \end{bmatrix}_{5} \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 5 - 15 \\ 15 & 5 \end{bmatrix}_{5} = \begin{bmatrix} 1 - 3 \\ 3 & 1 \end{bmatrix}$ of

 $A = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix}_{5}$

Check $(3,1) \rightarrow (1,3)$ across $(1,3)$ across $(1,3)$ across $(1,1)$ acr

[4] Find an orthogonal basis for the subspace of \mathbb{R}^4 spanned by the vectors

$$(1,1,1,1), (1,2,2,2), (1,1,2,2), (3,4,5,5)$$

mutually \perp of ord belong to y=2 order correct number? subspace $\dim=3$ or [5] Let V be the vector space of all polynomials of degree ≤ 4 in the variable x with coefficients in \mathbb{R} . Let W be the subspace of odd polynomials: those polynomials for which f(-x) = -f(x). Find an orthogonal basis for W with respect to the inner product

$$W = \begin{cases} qx^{3} + bx \end{cases}$$

$$V_{1} = x$$

$$V_{2} = x^{3}$$

$$W_{2} = 20x^{3} - 6x$$

$$W_{2} = V_{2} - \frac{V_{2}W_{1}}{W_{1}W_{1}} W_{1} = V_{2} - \frac{V_{2}W_{1}}{W_{2}} W_{1} = V_{2} - \frac{V_{2}W_{1}}{W_{2}W_{1}} = V_{2} - \frac{V_{2}W_{1}}{W_{1}W_{1}} = V_{2} - \frac{V_{2}W_{1}}{W_{2}W_{1}} = V_{2} - \frac{V_{2}W_{1}}{W_{1}W_{1}} = V_{2} - \frac{V_{2}W_{1}}{W_{1}} = V_{2}$$