Exam 2
Linear Algebra, Dave Bayer, 10:10 AM, March 12, 2013

Name: ________________________________ Uni: ________________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you need more than one page for a problem, clearly indicate on each page where to look next for your work.

[1] Find a basis for the set of solutions to the system of equations

\[
\begin{bmatrix} 1 & 1 & 1 & 2 & 0 \\ 2 & 2 & 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

Extend this basis to a basis for \(\mathbb{R}^5 \).
[2] By least squares, find the equation of the form $y = ax + b$ which best fits the data

$(x_1, y_1) = (0, 1), \quad (x_2, y_2) = (1, 0), \quad (x_3, y_3) = (2, 2)$
[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 which projects orthogonally onto the subspace
\[x + 2y + z = 0 \]
Find the matrix A which represents L in standard coordinates.
[4] Find an orthogonal basis for the subspace of \mathbb{R}^4 spanned by the vectors

$$(1, 1, 1, 1), \quad (1, 2, 1, 2), \quad (2, 1, 2, 1), \quad (2, 2, 2, 2)$$
Let V be the vector space of all polynomials of degree $\leqslant 3$ in the variable x with coefficients in \mathbb{R}. Let W be the subspace of polynomials satisfying $f(0) = f'(0) = 0$. Find an orthogonal basis for W with respect to the inner product

$$\langle f, g \rangle = \int_{0}^{1} f(x)g(x) \, dx$$