

Name:

[[1] (5 pts)	[2] (5 pts)	[3] (5 pts)	[4] (5 pts)	[5] (5 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages. Do not use calculators or decimal notation. Please simplify each answer as far as possible.

[1] Find an orthogonal basis for the subspace V of \mathbb{R}^5 spanned by the vectors

(1, 0, -1, 0, 1) (0, 1, -1, 0, 0) (0, 0, 1, -1, 0)

[2] Let V be the vector space of all polynomials f(x) of degree ≤ 3 . Find a basis for the subspace W defined by

$$f(\mathbf{x}) = f(-\mathbf{x})$$

Extend this basis to a basis for V.

[3] Define the inner product of two polynomials f and g by the rule

$$\langle f,g \rangle = \int_{-1}^{1} f(x) g(x) dx$$

Using this definition of the inner product, find an orthogonal basis for the vector space of all polynomials of degree ≤ 2 .

[4] Find the matrix e^{At} , where $A = \begin{bmatrix} 2 & 2 & -2 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$.

[5] Find a matrix A so $A^2 = \begin{bmatrix} -2 & 6 \\ -3 & 7 \end{bmatrix}$.