[1] Find an orthogonal basis for the subspace V of \mathbb{R}^5 spanned by the vectors

\[
(1, 0, -1, 0, 1) \quad (0, 1, -1, 0, 0) \quad (0, 0, 1, -1, 0)
\]
[2] Let V be the vector space of all polynomials $f(x)$ of degree ≤ 3. Find a basis for the subspace W defined by

$$f(x) = f(-x)$$

Extend this basis to a basis for V.
Define the inner product of two polynomials f and g by the rule

$$
\langle f, g \rangle = \int_{-1}^{1} f(x) g(x) \, dx
$$

Using this definition of the inner product, find an orthogonal basis for the vector space of all polynomials of degree ≤ 2.
Find the matrix e^{At}, where $A = \begin{bmatrix} 2 & 2 & -2 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$.
Find a matrix A so $A^2 = \begin{bmatrix} -2 & 6 \\ -3 & 7 \end{bmatrix}$.