[1] Find the 2 \times 2 matrix which reflects across the line x – 2y = 0.

[2] Find the 3×3 matrix which vanishes on the plane x + y + z = 0, and maps the vector (1, 0, 0) to itself.

[3] Find the 3×3 matrix which vanishes on the vector (1, 1, 1), and maps each point on the plane x + y = 0 to itself.

[4] Find the 3×3 matrix that projects orthogonally onto the line

[x]		[1]	
y	=	1	t
$\lfloor z \rfloor$		2	

[5] Find the 3×3 matrix that projects orthogonally onto the plane

$$\mathbf{x} + \mathbf{y} + \mathbf{z} = \mathbf{0}$$

[6] Find the row space and the column space of the matrix

1	1	1	1	1]
1	2	2	2	2
2	3	3	3	3

[7] By least squares, find the equation of the form y = ax + b that best fits the data

x_1	y1		0	1	
χ_2	y_2	=		1	
χ_3	y3 _		2	2	

[8] Find an orthogonal basis for the subspace V of \mathbb{R}^4 spanned by the vectors

(1, -1, 0, 0) (0, 1, -1, 0) (0, 0, 1, -1) (1, 0, -1, 0) (0, 1, 0, -1)

Extend this basis to an orthogonal basis for \mathbb{R}^4 .

[9] Let V be the vector space of all polynomials of degree ≤ 2 in the variable x with coefficients in \mathbb{R} . Let W be the subspace consisting of those polynomials f(x) such that f(1) = 0. Find the orthogonal projection of the polynomial x onto the subspace W, with respect to the inner product

$$\langle f,g\rangle\ =\ \int_0^1 f(x)g(x)\ dx$$