1. Find the 2×2 matrix which reflects across the line $3x - y = 0$.

2. Find the 3×3 matrix which vanishes on the plane $4x + 2y + z = 0$, and maps the vector $(1, 1, 1)$ to itself.

3. Find the 3×3 matrix which vanishes on the vector $(1, 1, 0)$, and maps each point on the plane $x + 2y + 2z = 0$ to itself.

4. Find the 3×3 matrix that projects orthogonally onto the line

$$
\begin{bmatrix}
 x \\
 y \\
 z \\
\end{bmatrix}
= \begin{bmatrix}
 1 \\
 -2 \\
 3 \\
\end{bmatrix} t
$$

5. Find the 3×3 matrix that projects orthogonally onto the plane

$$x + 2y + 3z = 0$$

6. Find the row space and the column space of the matrix

$$
\begin{bmatrix}
 0 & 0 & 1 & 1 & 1 \\
 0 & 0 & 1 & 2 & 3 \\
 0 & 0 & 1 & 3 & 6 \\
\end{bmatrix}
$$

7. By least squares, find the equation of the form $y = ax + b$ that best fits the data

$$
\begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 x_3 & y_3 \\
\end{bmatrix}
= \begin{bmatrix}
 0 & 1 \\
 1 & 0 \\
 2 & 3 \\
\end{bmatrix}
$$

8. Find an orthogonal basis for the subspace V of \mathbb{R}^4 spanned by the vectors

$$(1, 2, 0, 0) \quad (0, 1, 2, 0) \quad (1, 3, 3, 2) \quad (0, 0, 1, 2) \quad (1, 3, 3, 2)$$

Extend this basis to an orthogonal basis for \mathbb{R}^4.

9. Let V be the vector space of all polynomials of degree ≤ 2 in the variable x with coefficients in \mathbb{R}. Let W be the subspace consisting of those polynomials $f(x)$ such that $f(-1) = 0$. Find the orthogonal projection of the polynomial $x + 1$ onto the subspace W, with respect to the inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, dx$$