[1] Find the 3×3 matrix which maps the vector $(0, 1, 1)$ to $(0, 2, 2)$, and maps each point on the plane $x + y = 0$ to the zero vector.

[2] Find a basis for the row space and a basis for the column space of the matrix

$$
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 \\
-2 & 0 & 0 & 1 & 1 & 0 \\
0 & -2 & 0 & -1 & 0 & 1 \\
0 & 0 & -2 & 0 & -1 & -1
\end{bmatrix}
$$

[3] Find the 3×3 matrix that projects orthogonally onto the plane

$$
x + 2y = 0
$$

[4] Find an orthogonal basis for the subspace V of \mathbb{R}^4 spanned by the vectors

$$(1, -2, 0, 0) \quad (1, 0, -2, 0) \quad (1, 0, 0, -2) \quad (0, 1, -1, 0) \quad (0, 1, 0, -1) \quad (0, 0, 1, -1)$$

Extend this basis to an orthogonal basis for \mathbb{R}^4.

[5] Let V be the vector space of all polynomials of degree ≤ 2 in the variable x with coefficients in \mathbb{R}. Let W be the subspace of V consisting of those polynomials $f(x)$ such that the second derivative $f''(x) = 0$.

Find the orthogonal projection of the polynomial x^2 onto the subspace W, with respect to the inner product

$$
\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx
$$