Final Exam

Linear Algebra, Dave Bayer, December 19, 2013

Name: Uni:										
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	Total	

If you need more than one page for a problem, clearly indicate on each page where to look next for your work.

[1] Find the intersection of the following two affine subspaces of \mathbb{R}^3 .

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}$$

[2] Find an orthogonal basis for the subspace of \mathbb{R}^4 defined by the equation w + x - y - z = 0. Extend this basis to a orthogonal basis for \mathbb{R}^4 .

[3] Find the determinant of the matrix

2	1	0	0	0	0	ך 0
2	2	1	0	0	0	0
0	2	2	1	0	0	0
0	0	2	2	1	0	0
0	0	0	2	2	1	0
0	0	0	0	2	2	1
0	0	0	0	0	2	0 0 0 0 0 1 2

[4] Solve the differential equation y' = Ay where

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix}, \qquad y(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

[5] Express the quadratic form

$$-4xy + 3y^2$$

as a sum of squares of othogonal linear forms.

[6] Solve the recurrence relation

$$f(0) = a$$
, $f(1) = b$, $f(n) = 3 f(n-1) - 2 f(n-2)$

[7] Find e^{At} where A is the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

[8] Solve the differential equation y' = Ay where

$$A = \begin{bmatrix} -2 & 2 & -1 \\ -1 & 1 & -2 \\ -1 & 1 & 1 \end{bmatrix}, \qquad y(0) = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$