Exam 2
Linear Algebra, Dave Bayer, October 22, 2013

[1] Find a basis for the subspace V of \mathbb{R}^4 spanned by the vectors

$\begin{align*}
(2, 0, 1, 0), & \quad (2, 0, 0, 1), \quad (0, 2, 1, 0), \quad (0, 2, 0, 1)
\end{align*}$

Extend this basis to a basis for \mathbb{R}^4.

[2] By least squares, find the equation of the form $y = ax + b$ which best fits the data

$\begin{align*}
(x_1, y_1) &= (−1, 0), & (x_2, y_2) &= (0, 0), & (x_3, y_3) &= (1, 0), & (x_4, y_4) &= (2, 1)
\end{align*}$

[3] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 which projects orthogonally onto the subspace V spanned by $(1, −1, 0)$ and $(0, 2, 1)$. Find the matrix A which represents L in standard coordinates.

[4] Let V be the vector space of all polynomials of degree ≤ 2 in the variable x with coefficients in \mathbb{R}. Let W be the subspace of polynomials satisfying $f(2) = 0$. Find an orthogonal basis for W with respect to the inner product

$\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$

[5] Find an orthogonal basis for the subspace of \mathbb{R}^4 defined by the equation $w + x - 2y - 2z = 0$. Extend this basis to a orthogonal basis for \mathbb{R}^4.